Roles of LOX-1 and Stress-Activated Kinases in Retinal Dysfunction during Early Diabetes

LOX-1 和应激激活激酶在早期糖尿病视网膜功能障碍中的作用

基本信息

  • 批准号:
    8888305
  • 负责人:
  • 金额:
    $ 46.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-30 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Retinopathy is a major complication of diabetes mellitus and a leading cause of blindness. Treatment modalities for restoring retinal function are relatively ineffective. Although proper retinal function relies on a sufficient supply of blood flo and alterations of both neural and vascular retina have been reported, the mechanism and temporal relationship between neural retina damage and vasomotor function remains unclear. Therefore, simultaneous assessment and unveiling the mechanism of vascular and neural changes in the retina during early diabetes is vital to our understanding of the retinal pathogenesis as well as to development of new therapies for early treatment. Although oxidative stress is implicated in retinal damage in diabetic retinopathy, clinical therapy with antioxidants has been mostly ineffective, suggesting other mechanisms may be involved in sustaining vasomotor and neural retina dysfunction. Also, development of an animal model of diabetes relevant to the human retinal microcirculation and its pathophysiology is lacking. To address these clinically important issues, we have developed a streptozocin-induced type 1 diabetes model in the pig, an animal model that we have shown to resemble the human in retinal vasomotor regulation and dysregulation. Our preliminary data show that within 2 wk of diabetes, endothelium-dependent nitric oxide (NO)-mediated dilation of retinal arterioles is impaired. Elevation of superoxide within diabetic retinal arterioles was observed but antioxidants did not improve endothelium-dependent dilation. Vasomotor impairment was improved by blockade of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), proteasomes or phosphorylation of c-Jun N- terminal kinase-1 (JNK1). LOX-1 and JNK1 are implicated in cardiovascular diseases possibly by altering endothelial NO synthase activity, but their signaling associated with retinal vascular disease remains unknown. Since scotopic b-wave amplitude is also reduced during 6-wk but not 2-wk diabetes, it appears vasomotor dysfunction precedes inner neural retina damage. Thus, the goal of this study is to delineate the link between LOX-1 and JNK1 in the retinal endothelial dysfunction and to determine whether these two molecules can serve as novel targets for improving retinal arteriolar function, along with secondary amelioration of neural retina function, during early diabetes. We will test the hypothesis that early diabetes initiates superoxide-dependent upregulation of LOX-1 and subsequent downstream JNK1/ubiquitin-proteasome signaling for sustained degradation of SIRT1 in the retinal arteriolar endothelium, which leads to reduction of NO-mediated dilation prior to neural retina dysfunction. We will pursue two specific aims: (1) Determine the contributions of superoxide and LOX-1 to diabetes-induced endothelial dysfunction of retinal arterioles prior to neural retina damage; (2) Delineate the contribution of JNK1-dependent phosphorylation and ubiquitin-proteasome degradation of SIRT1 to diabetes-induced endothelial dysfunction of retinal arterioles. Outcomes from basic findings will be translated to therapeutic treatment of retinal vascular disease via siRNA technology in early diabetes.
 DESCRIPTION (provided by applicant): Retinopathy is a major complication of diabetes mellitus and a leading cause of blindness. Treatment modalities for restoring retinal function are relatively ineffective. Although proper retinal function relies on a sufficient supply of blood flo and alterations of both neural and vascular retina have been reported, the mechanism and temporal relationship between neural retina damage and vasomotor function remains unclear. Therefore, simultaneous assessment and unveiling the mechanism of vascular and neural changes in the retina during early diabetes is vital to our understanding of the retinal pathogenesis as well as to development of new therapies for early treatment. Although oxidative stress is implicated in retinal damage in diabetic retinopathy, clinical therapy with antioxidants has been mostly ineffective, suggesting other mechanisms may be involved in sustaining vasomotor and neural retina dysfunction. Also, development of an animal model of diabetes relevant to the human retinal microcirculation and its pathophysiology is lacking. To address these clinically important issues, we have developed a streptozocin-induced type 1 diabetes model in the pig, an animal model that we have shown to resemble the human in retinal vasomotor regulation and dysregulation. Our preliminary data show that within 2 wk of diabetes, endothelium-dependent nitric oxide (NO)-mediated dilation of retinal arterioles is impaired. Elevation of superoxide within diabetic retinal arterioles was observed but antioxidants did not improve endothelium-dependent dilation. Vasomotor impairment was improved by blockade of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), proteasomes or phosphorylation of c-Jun N- terminal kinase-1 (JNK1). LOX-1 and JNK1 are implicated in cardiovascular diseases possibly by altering endothelial NO synthase activity, but their signaling associated with retinal vascular disease remains unknown. Since scotopic b-wave amplitude is also reduced during 6-wk but not 2-wk diabetes, it appears vasomotor dysfunction precedes inner neural retina damage. Thus, the goal of this study is to delineate the link between LOX-1 and JNK1 in the retinal endothelial dysfunction and to determine whether these two molecules can serve as novel targets for improving retinal arteriolar function, along with secondary amelioration of neural retina function, during early diabetes. We will test the hypothesis that early diabetes initiates superoxide-dependent upregulation of LOX-1 and subsequent downstream JNK1/ubiquitin-proteasome signaling for sustained degradation of SIRT1 in the retinal arteriolar endothelium, which leads to reduction of NO-mediated dilation prior to neural retina dysfunction. We will pursue two specific aims: (1) Determine the contributions of superoxide and LOX-1 to diabetes-induced endothelial dysfunction of retinal arterioles prior to neural retina damage; (2) Delineate the contribution of JNK1-dependent phosphorylation and ubiquitin-proteasome degradation of SIRT1 to diabetes-induced endothelial dysfunction of retinal arterioles. Outcomes from basic findings will be translated to therapeutic treatment of retinal vascular disease via siRNA technology in early diabetes.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TRAVIS W HEIN其他文献

TRAVIS W HEIN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TRAVIS W HEIN', 18)}}的其他基金

Endothelin-1 System Activation and Retinal Microvascular Dysregulation during Early Diabetes
早期糖尿病期间内皮素-1 系统激活和视网膜微血管失调
  • 批准号:
    10504529
  • 财政年份:
    2022
  • 资助金额:
    $ 46.24万
  • 项目类别:
Endothelin-1 System Activation and Retinal Microvascular Dysregulation during Early Diabetes
早期糖尿病期间内皮素-1 系统激活和视网膜微血管失调
  • 批准号:
    10701883
  • 财政年份:
    2022
  • 资助金额:
    $ 46.24万
  • 项目类别:
Intravitreal ECE-1 siRNA Treatment for Retinal Dysfunction during Early Diabetes
玻璃体内 ECE-1 siRNA 治疗早期糖尿病视网膜功能障碍
  • 批准号:
    8821045
  • 财政年份:
    2015
  • 资助金额:
    $ 46.24万
  • 项目类别:
Roles of LOX-1 and Stress-Activated Kinases in Retinal Dysfunction during Early Diabetes
LOX-1 和应激激活激酶在早期糖尿病视网膜功能障碍中的作用
  • 批准号:
    9330861
  • 财政年份:
    2015
  • 资助金额:
    $ 46.24万
  • 项目类别:
Roles of LOX-1 and Stress-Activated Kinases in Retinal Dysfunction during Early Diabetes
LOX-1 和应激激活激酶在早期糖尿病视网膜功能障碍中的作用
  • 批准号:
    9146954
  • 财政年份:
    2015
  • 资助金额:
    $ 46.24万
  • 项目类别:
Vasomotor Dysfunction of Retinal Arterioles in Diabetes
糖尿病视网膜小动脉血管舒缩功能障碍
  • 批准号:
    8631325
  • 财政年份:
    2014
  • 资助金额:
    $ 46.24万
  • 项目类别:
Vasomotor Dysfunction of Retinal Arterioles in Diabetes
糖尿病视网膜小动脉血管舒缩功能障碍
  • 批准号:
    9020236
  • 财政年份:
    2014
  • 资助金额:
    $ 46.24万
  • 项目类别:
Role of Endothelin System and NAD(P)H Oxidase in Retinal Arteriolar Dysfunction
内皮素系统和 NAD(P)H 氧化酶在视网膜小动脉功能障碍中的作用
  • 批准号:
    7926513
  • 财政年份:
    2008
  • 资助金额:
    $ 46.24万
  • 项目类别:
Role of Endothelin System and NAD(P)H Oxidase in Retinal Arteriolar Dysfunction
内皮素系统和 NAD(P)H 氧化酶在视网膜小动脉功能障碍中的作用
  • 批准号:
    7539150
  • 财政年份:
    2008
  • 资助金额:
    $ 46.24万
  • 项目类别:
Role of Endothelin System and NAD(P)H Oxidase in Retinal Arteriolar Dysfunction
内皮素系统和 NAD(P)H 氧化酶在视网膜小动脉功能障碍中的作用
  • 批准号:
    8005501
  • 财政年份:
    2008
  • 资助金额:
    $ 46.24万
  • 项目类别:

相似海外基金

Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
  • 批准号:
    495434
  • 财政年份:
    2023
  • 资助金额:
    $ 46.24万
  • 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
  • 批准号:
    10642519
  • 财政年份:
    2023
  • 资助金额:
    $ 46.24万
  • 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
  • 批准号:
    10586596
  • 财政年份:
    2023
  • 资助金额:
    $ 46.24万
  • 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
  • 批准号:
    10590479
  • 财政年份:
    2023
  • 资助金额:
    $ 46.24万
  • 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
  • 批准号:
    23K06011
  • 财政年份:
    2023
  • 资助金额:
    $ 46.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
  • 批准号:
    10682117
  • 财政年份:
    2023
  • 资助金额:
    $ 46.24万
  • 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
  • 批准号:
    10708517
  • 财政年份:
    2023
  • 资助金额:
    $ 46.24万
  • 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
  • 批准号:
    10575566
  • 财政年份:
    2023
  • 资助金额:
    $ 46.24万
  • 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
  • 批准号:
    23K15696
  • 财政年份:
    2023
  • 资助金额:
    $ 46.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
  • 批准号:
    23K15867
  • 财政年份:
    2023
  • 资助金额:
    $ 46.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了