Centrosomes and Cytoskeletal Mechanisms of Blood Vessel Dysfunction

血管功能障碍的中心体和细胞骨架机制

基本信息

  • 批准号:
    8891096
  • 负责人:
  • 金额:
    $ 11.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-11 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): PROJECT SUMMARY/ABSTRACT CANDIDATE- I completed my graduate work at the University of Colorado, Boulder, focusing on endothelial cell dysfunction in human cohorts. After graduation, I broadened my research training by seeking a postdoctoral position in Dr. Victoria Bautch's (mentor) lab at the University of North Carolina (UNC), Department of Biology. Here, I use transgenic mouse and cell-based models to study the developmental and molecular mechanisms of vessel formation and dysfunction. At UNC, I am uniquely situated to carry out the proposed training plan and research strategy with the aid of my co-mentors, Dr.'s James Bear and Alexey Khodjakov. Completion of the proposed aims, training and educational activities will provide me with the necessary skills and collaborations to reach my long-term career goal of running an independent, extramurally funded biomedical research lab at a research-one university. PROPOSED RESEARCH- Setup and maintenance of blood vessels requires the integration and coordination of signaling pathways and cytoskeletal programs. Much is known about how aberrant signaling contributes to formation of pathological vasculature; however, less is understood about how cytoskeletal programs become dysfunctional and impair blood vessel architecture. This notion is best exemplified by tumor blood vessels; although, it is not limited to cancer-related pathologies. Tumor vessels are abnormal, leaky and dilated, providing a venue for tumor cell escape. Even in the absence of the tumor microenvironment, isolated tumor endothelial cells (ECs) demonstrate a preservation of abnormal cellular behaviors. These findings suggest that permanent alterations occur in tumor ECs, independent of signaling influences, possibly due to cytoskeletal abnormalities. In this regard, our group has previously described a mechanism by which excessive pro- angiogenic growth factor signaling, akin to that found in cancers, promotes the formation of supernumerary centrosomes (more than two centrosomes) in ECs. This data provided a mechanism for how tumor ECs acquire excess centrosomes in the tumor compartment at very high frequencies (>1/3 of total EC population). Furthering this finding, I have recently provided a novel mechanism linking interphase supernumerary centrosomes to EC motility defects in 2D (Kushner et al.; JCB. 2014). Our results demonstrated that supernumerary centrosomes are mispolarized, causing a cascade of cytoskeletal changes, which culminates in loss of directional cell migration. However, this investigation has prompted many additional questions, which this proposal strives to better understand and significantly expand upon. Globally, this proposal aims to determine how supernumerary centrosomes influence blood vessel morphogenesis in 3D sprouting (mentored phase). Furthermore, because centrosome polarization is vital for proper EC migration, I will also explore unique mechanisms of centrosome polarization and tethering (independent phase). For the mentored phase, in multiple models of 3D angiogenesis (in vitro, ex vivo, and in vivo) blood vessels with and without supernumerary centrosomes via Plk4 overexpression will be analyzed for morphological defects. Previously, I demonstrated that supernumerary centrosomes affect microtubule (MT) dynamics in 2D. To examine if MT defects persist in 3D, live-cell imaging and MT analysis software will be employed to monitor MT dynamics in ECs in 3D sprouts. Additionally, I hypothesize that supernumerary centrosomes will also effect the Golgi complex and vesicle trafficking, as these organelles are MT-dependent. Accordingly, the Golgi complex and vesicular proteins will be marked in ECs with fluorescent proteins in order to visualize their dynamics with and without excess centrosomes. If perturbed, key EC polarity and junctional proteins will be examined for mislocalization downstream of disrupted post-Golgi vesicle trafficking due to the presence of excess centrosomes. Predicted results will shed light on how supernumerary centrosome promotes blood vessel dysmorphogenesis in 3D. For the independent phase, I will characterize a unique phenomenon in which centrosome pairs (two centrosomes connected by MTs) can differentially regulate their MT dynamics in response to pulling forces exerted at the cortex, such as in cell migration. In this aim, I will explore how/if centrosomes sense tension using photoactivable Rac1 protein to induced membrane tension, software-based MT tracking and MT laser severing techniques. Candidate proteins involved will be selectively knocked down, overexpressed and rescued to thoroughly interrogate signaling programs responsible for modulation of centrosomal-MTs in response to tension cues. Lastly, a new mouse will be generated for conditional, vascular- specific knock down of dynein (a MT-motor protein) to explore how disruption of centrosome tethering and polarization impacts vessel network formation. .


项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erich J Kushner其他文献

Erich J Kushner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Erich J Kushner', 18)}}的其他基金

Polarized Protein Trafficking and Angiogenesis
极化蛋白运输和血管生成
  • 批准号:
    10363446
  • 财政年份:
    2022
  • 资助金额:
    $ 11.91万
  • 项目类别:
Polarized Protein Trafficking and Angiogenesis
极化蛋白运输和血管生成
  • 批准号:
    10539327
  • 财政年份:
    2022
  • 资助金额:
    $ 11.91万
  • 项目类别:
Mechanisms of Delta-like 4 Endocytosis and Notch Activation During Blood Vessel Development
血管发育过程中 Delta-like 4 内吞作用和 Notch 激活的机制
  • 批准号:
    10202195
  • 财政年份:
    2021
  • 资助金额:
    $ 11.91万
  • 项目类别:
Mechanisms of Basement Membrane Regulation During Angiogenesis
血管生成过程中基底膜的调节机制
  • 批准号:
    10002605
  • 财政年份:
    2019
  • 资助金额:
    $ 11.91万
  • 项目类别:
Centrosome Over-duplication and Blood Vessel Function
中心体过度复制与血管功能
  • 批准号:
    8455123
  • 财政年份:
    2013
  • 资助金额:
    $ 11.91万
  • 项目类别:
Centrosome Over-duplication and Blood Vessel Function
中心体过度复制与血管功能
  • 批准号:
    8627974
  • 财政年份:
    2013
  • 资助金额:
    $ 11.91万
  • 项目类别:

相似海外基金

Development of Novel Lung Cancer Therapy Using Tumor-Specific Angiogenesis Inhibitors and Drug Repositioning
使用肿瘤特异性血管生成抑制剂和药物重新定位开发新型肺癌疗法
  • 批准号:
    21H03019
  • 财政年份:
    2021
  • 资助金额:
    $ 11.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of biomarkers related to drug resistance of angiogenesis inhibitors
血管生成抑制剂耐药性相关生物标志物的开发
  • 批准号:
    20K08542
  • 财政年份:
    2020
  • 资助金额:
    $ 11.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structural and Functional Studies of Brain Angiogenesis Inhibitors (BAIs/ADGRBs)
脑血管生成抑制剂 (BAIs/ADGRB) 的结构和功能研究
  • 批准号:
    9813883
  • 财政年份:
    2019
  • 资助金额:
    $ 11.91万
  • 项目类别:
Elucidation of proteinuria expression mechanism by angiogenesis inhibitors and research on adverse effect avoidance
血管生成抑制剂蛋白尿表达机制的阐明及不良反应避免的研究
  • 批准号:
    17K08457
  • 财政年份:
    2017
  • 资助金额:
    $ 11.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Evaluation of cardiotoxicity and elucidation of cardiotoxic molecular mechanisms in cancer patients receiving angiogenesis inhibitors
接受血管生成抑制剂的癌症患者的心脏毒性评估和心脏毒性分子机制的阐明
  • 批准号:
    26461102
  • 财政年份:
    2014
  • 资助金额:
    $ 11.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Minimally invasive response evaluation in vivo for the dual therapy of the angiogenesis inhibitors
血管生成抑制剂双重治疗的体内微创疗效评价
  • 批准号:
    23591763
  • 财政年份:
    2011
  • 资助金额:
    $ 11.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ANGIOGENESIS INHIBITORS IN THE MULTIMODAL TREATMENT OF PEDIATRIC SOLID TUMORS
血管生成抑制剂在小儿实体瘤多模式治疗中的应用
  • 批准号:
    8309814
  • 财政年份:
    2011
  • 资助金额:
    $ 11.91万
  • 项目类别:
Discovery and Investigation of Novel Angiogenesis Inhibitors Among Existing Drugs
现有药物中新型血管生成抑制剂的发现和研究
  • 批准号:
    7351352
  • 财政年份:
    2008
  • 资助金额:
    $ 11.91万
  • 项目类别:
Discovery and Investigation of Novel Angiogenesis Inhibitors Among Existing Drugs
现有药物中新型血管生成抑制剂的发现和研究
  • 批准号:
    8002099
  • 财政年份:
    2008
  • 资助金额:
    $ 11.91万
  • 项目类别:
Discovery and Investigation of Novel Angiogenesis Inhibitors Among Existing Drugs
现有药物中新型血管生成抑制剂的发现和研究
  • 批准号:
    7537218
  • 财政年份:
    2008
  • 资助金额:
    $ 11.91万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了