BIGDATA: Mid-Scale DCM: DA: ESCE: Discovering Molecular Processes

BIGDATA:中型 DCM:DA:ESCE:发现分子过程

基本信息

项目摘要

DESCRIPTION (provided by applicant): Cancer is a disease of the genome, caused by disruptions in a person's DNA. Orders of magnitude decreases in price and increases in sequencing throughput enabled sequencing of hundreds of genomes. This will launch a new phase bf "Precision Medicine," where molecular markers can guide therapies tailored to patients. The genomics revolution is now systematically characterizing every somatic change in every tumor for large cohorts (>300 patients). Despite some successes, predicting cancer outcomes based on molecular signatures remains a major challenge. This proposal aims at obliterating several key roadblocks stymieing progress. First, the raw sequence data is not particularly well-suited for use in developing predictive models. Therefore, gene- and pathway-level evidence will be derived from CGHub to significantly increase the utility of the information for biomedical discovery. The information will be collected in a Social Graph technology framework like Facebook to scale to billions of interconnected objects called the Biomedical Evidence Graph (BMEG). Second, the datasets are so large they are impractical to move around on the internet. Thus, an environment will be created within which researchers can move their code to the vast amounts of data within the BMEG. Third, prediction challenges will be created based on cancer genomics datasets and patient outcomes. While there have been a few successes in predicting outcomes, current approaches suffer from reproducibility and robustness when applied to unseen data. This activity will reach a broad community of algorithm developers, promote transparency and sharing of bioinformatics code, and create a strong network effect to crowd-source the development of the best models for biological discovery. The system constructed will be focused around the investigation of cancer outcomes but the entire pipeline will be of general utility for any number of genome-based projects including investigating any number of disease, stem cell properties, model organisms, and genome-wide association studies. RELEVANCE (See instructions): While we are accumulating vast amounts of information on cancer cells, we are still searching in the dark for clues about predicting treatment strategies. It is of paramount importance to accelerate computational discovery. The creation of the BMEG will catalyze community participation to uncover novel relationships to elucidate new fundamental biology on oncogenesis and therapeutic directions for treating this disease.
描述(由申请人提供):癌症是一种基因组疾病,由人的DNA中断引起。数量级的价格下降和测序吞吐量的增加使数百个基因组的测序成为可能。这将开启“精准医学”的新阶段,在这个阶段,分子标记可以指导针对患者的治疗。基因组学革命现在系统地描述了大型队列(约300名患者)中每个肿瘤的每一个体细胞变化。尽管取得了一些成功,但基于分子特征预测癌症结果仍然是一个重大挑战。这项建议旨在消除阻碍进展的几个主要障碍。首先,原始序列数据并不特别适合用于开发预测模型。因此,基因和通路水平的证据将从chub中获得,以显着增加生物医学发现信息的效用。这些信息将被收集到像Facebook这样的社交图谱技术框架中,以扩展到数十亿个相互关联的对象,称为生物医学证据图谱(BMEG)。其次,数据集太大,在互联网上移动是不切实际的。因此,将创建一个环境,在这个环境中,研究人员可以将他们的代码移动到BMEG中的大量数据中。第三,预测挑战将基于癌症基因组数据集和患者结果。虽然在预测结果方面已经取得了一些成功,但目前的方法在应用于未知数据时存在可重复性和稳健性的问题。这项活动将接触到广泛的算法开发人员社区,促进生物信息学代码的透明度和共享,并创造强大的网络效应,以众包开发生物发现的最佳模型。构建的系统将集中于癌症结果的调查,但整个管道将用于任何数量的基于基因组的项目,包括调查任何数量的疾病,干细胞特性,模式生物和全基因组关联研究。相关性(见说明):虽然我们正在积累大量关于癌细胞的信息,但我们仍然在黑暗中寻找预测治疗策略的线索。加速计算发现是至关重要的。BMEG的创建将促进社区参与,揭示新的关系,阐明肿瘤发生的新基础生物学和治疗这种疾病的治疗方向。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JOSHUA Michael STUART其他文献

JOSHUA Michael STUART的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JOSHUA Michael STUART', 18)}}的其他基金

UCSC-Buck Specialized Genomic Data Analysis Center for the Genomic Data Analysis Network
UCSC-Buck 基因组数据分析网络专业基因组数据分析中心
  • 批准号:
    10001323
  • 财政年份:
    2016
  • 资助金额:
    $ 62.92万
  • 项目类别:
UCSC-Buck Specialized Genomic Data Analysis Center for the Genomic Data Analysis Network
UCSC-Buck 基因组数据分析网络专业基因组数据分析中心
  • 批准号:
    9353344
  • 财政年份:
    2016
  • 资助金额:
    $ 62.92万
  • 项目类别:
UCSC-Buck Specialized Genomic Data Analysis Center for the Genomic Data Analysis Network
UCSC-Buck 基因组数据分析网络专业基因组数据分析中心
  • 批准号:
    9763504
  • 财政年份:
    2016
  • 资助金额:
    $ 62.92万
  • 项目类别:
New Integrative Pathway Analysis Methods to Predict Biomedical Outcomes
预测生物医学结果的新综合途径分析方法
  • 批准号:
    9097769
  • 财政年份:
    2014
  • 资助金额:
    $ 62.92万
  • 项目类别:
New Integrative Pathway Analysis Methods to Predict Biomedical Outcomes
预测生物医学结果的新综合途径分析方法
  • 批准号:
    8927029
  • 财政年份:
    2014
  • 资助金额:
    $ 62.92万
  • 项目类别:
New Integrative Pathway Analysis Methods to Predict Biomedical Outcomes
预测生物医学结果的新综合途径分析方法
  • 批准号:
    8615841
  • 财政年份:
    2014
  • 资助金额:
    $ 62.92万
  • 项目类别:
BIGDATA: Mid-Scale DCM: DA: ESCE: Discovering Molecular Processes
BIGDATA:中型 DCM:DA:ESCE:发现分子过程
  • 批准号:
    8599838
  • 财政年份:
    2013
  • 资助金额:
    $ 62.92万
  • 项目类别:
BIGDATA: Mid-Scale DCM: DA: ESCE: Discovering Molecular Processes
BIGDATA:中型 DCM:DA:ESCE:发现分子过程
  • 批准号:
    8665397
  • 财政年份:
    2013
  • 资助金额:
    $ 62.92万
  • 项目类别:
Informatics and Integration
信息学和集成
  • 批准号:
    8332362
  • 财政年份:
    2011
  • 资助金额:
    $ 62.92万
  • 项目类别:
Informatics and Integration
信息学和集成
  • 批准号:
    8125844
  • 财政年份:
    2010
  • 资助金额:
    $ 62.92万
  • 项目类别:

相似海外基金

Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
  • 批准号:
    495434
  • 财政年份:
    2023
  • 资助金额:
    $ 62.92万
  • 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
  • 批准号:
    10586596
  • 财政年份:
    2023
  • 资助金额:
    $ 62.92万
  • 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
  • 批准号:
    10590479
  • 财政年份:
    2023
  • 资助金额:
    $ 62.92万
  • 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
  • 批准号:
    10642519
  • 财政年份:
    2023
  • 资助金额:
    $ 62.92万
  • 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
  • 批准号:
    23K06011
  • 财政年份:
    2023
  • 资助金额:
    $ 62.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
  • 批准号:
    10682117
  • 财政年份:
    2023
  • 资助金额:
    $ 62.92万
  • 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
  • 批准号:
    10708517
  • 财政年份:
    2023
  • 资助金额:
    $ 62.92万
  • 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
  • 批准号:
    10575566
  • 财政年份:
    2023
  • 资助金额:
    $ 62.92万
  • 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
  • 批准号:
    23K15696
  • 财政年份:
    2023
  • 资助金额:
    $ 62.92万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
  • 批准号:
    23K15867
  • 财政年份:
    2023
  • 资助金额:
    $ 62.92万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了