Vestibular control of axial motor circuitry
轴向运动电路的前庭控制
基本信息
- 批准号:8959353
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-08 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:AnimalsAxonBehaviorBehavior ControlBehavioralBrain StemCalciumCalcium SignalingCellsClassificationContralateralDataDiabetes MellitusDorsalDyesEarElderlyElectrophysiology (science)ElectroporationEnvironmentEquilibriumEsthesiaFishesForce of GravityFutureGoalsHealth HazardsHumanImageImpairmentIndiumInterneuronsIpsilateralLabelLabyrinthLeftLimb structureLocomotionMammalsMapsMeasuresMethodsMotionMotorMotor NeuronsMotor outputMovementMuscleMusculoskeletal EquilibriumNeuronsNeuropathyOrganismOutputPathway interactionsPatternPhasePostureRecruitment ActivityRelative (related person)ResearchRoleSelf-control as a personality traitSensorySideSignal TransductionSpecificitySpinalSpinal CordSwimmingSynapsesSystemTestingTherapeutic InterventionTorqueTrainingTransgenic OrganismsTranslatingVertebral columnVertebratesVertigoZebrafishawakebasecell typefallsimprovedin vivolimb movementmotor controlmutantneural circuitnovelotoconiaresearch studysensorsensory inputvestibulo-ocular reflex
项目摘要
Project Summary
Good control of posture and orientation is vital for animals as they make movements or navigate the
environment. Vertebrates rely on the vestibulospinal system to translate gravity sensations from the inner ear
into appropriate compensatory trunk (axial) and limb movements to stabilize and orient themselves. Although
this system exists in all vertebrates and is crucial for survival, research on it has languished due to the technical
difficulties in recording from vestibular and spinal neurons, especially during animal motion. My long-term
goal is to define the means by which vestibular and cerebellar pathways influence spinal circuit activity
patterns to fine-tune behavioral outputs. The objective of this proposal is to determine how vestibular signals
are translated into appropriate compensatory postural adjustments by defining the synaptic circuit by which
vestibular neurons govern the activity of spinal motor neurons and interneurons. To surmount the technical
difficulties that have limited prior efforts, I propose to use the larval zebrafish. Zebrafish are an excellent
system for this line of research because of the accessibility of their brainstem and spinal column, and the strong
homologies between zebrafish and mammalian spinal circuits. Thus, circuit mapping between the brainstem
and spinal cord can be performed with much greater ease than in mammalian systems, and the results are
likely to be applicable across vertebrates. Microcircuit activity can then be translated into behavioral output
due to the relative simplicity of the zebrafish body plan, yielding a complete picture of this vital sensorimotor
transformation. In Aim 1, a combination of calcium signaling and electrophysiology in vivo will be used to
examine differential recruitment of dorsal and ventral musculature while the animal attempts to right itself
from side-lying to upright. The requirement for vestibular signals will be tested in mutant animals missing
their otoliths (gravity sensors). These experiments will identify how motor pools are activated by vestibular
signals to drive self-righting. In Aim 2, vestibular neurons will be stimulated during in vivo recordings from
identified spinal motor neurons to test how vestibulospinal drive is distributed to the appropriate pools of
motor neurons for self-righting. Finally, Aim 3 will extend this research to spinal interneurons, to identify how
descending inputs regulate interneuronal circuits for highly specific modulation of movement. Impairments in
vestibulospinal signaling can cause vertigo and falls, a major health hazard in the elderly. Thus, a complete
sensory-to-motor analysis of vestibulospinal signaling will advance our understanding of descending control of
behavior and potentially identify strategies for improving human postural control.
项目摘要
对动物的姿势和方向的良好控制是至关重要的,因为它们可以移动或导航。
环境脊椎动物依靠前庭脊髓系统将重力感觉从内耳传来
适当的补偿躯干(轴向)和肢体运动,以稳定和定向自己。虽然
该系统存在于所有脊椎动物中,对生存至关重要,但由于技术原因,对它的研究已经萎缩。
前庭和脊髓神经元的记录困难,特别是在动物运动期间。我的长期
目的是确定前庭和小脑通路影响脊髓回路活动的方式
模式来微调行为输出。这项建议的目的是确定前庭信号如何
通过定义突触回路,
前庭神经元支配脊髓运动神经元和中间神经元的活动。超越技术
困难,限制了先前的努力,我建议使用幼虫斑马鱼。斑马鱼是一种极好的
这是因为他们的脑干和脊柱的可及性,以及强大的
斑马鱼和哺乳动物脊髓回路之间的同源性。因此,脑干和脑干之间的电路映射
和脊髓可以比在哺乳动物系统中更容易地进行,并且结果是
可能适用于脊椎动物。微电路活动然后可以转化为行为输出
由于斑马鱼的身体结构相对简单,因此可以完整地了解这种重要的感觉运动
转型在目标1中,钙信号传导和体内电生理学的组合将用于
当动物试图纠正自己时,检查背侧和腹侧肌肉组织的差异募集
从侧卧到直立前庭信号的要求将在缺失的突变动物中进行测试
耳石(重力传感器)。这些实验将确定运动池是如何被前庭刺激激活的。
信号来驱动自我扶正。在目标2中,前庭神经元将在来自
确定的脊髓运动神经元,以测试前庭脊髓驱动如何分布到适当的池,
运动神经元的自我恢复最后,Aim 3将把这项研究扩展到脊髓中间神经元,以确定它们是如何工作的。
下行输入调节神经元间回路以实现高度特异性的运动调制。中的减损
前庭脊髓信号可引起眩晕和福尔斯,这是老年人的主要健康危害。一个完整的
前庭脊髓信号的感觉-运动分析将促进我们对下行控制的理解。
行为和潜在的识别策略,以改善人类的姿势控制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martha W Bagnall其他文献
Martha W Bagnall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martha W Bagnall', 18)}}的其他基金
Longitudinal structure of spinal premotor circuits
脊髓前运动回路的纵向结构
- 批准号:
10577360 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
SYNAPTIC COMPUTATIONS IN CENTRAL VESTIBULAR NEURONS
中央前庭神经元的突触计算
- 批准号:
10161765 - 财政年份:2018
- 资助金额:
$ 24.9万 - 项目类别:
SYNAPTIC COMPUTATIONS IN CENTRAL VESTIBULAR NEURONS
中央前庭神经元的突触计算
- 批准号:
9927486 - 财政年份:2018
- 资助金额:
$ 24.9万 - 项目类别:
SYNAPTIC COMPUTATIONS IN CENTRAL VESTIBULAR NEURONS
中央前庭神经元的突触计算
- 批准号:
10399537 - 财政年份:2018
- 资助金额:
$ 24.9万 - 项目类别:
相似海外基金
An atypical microtubule generation mechanism for neurons drives dendrite and axon development and regeneration
神经元的非典型微管生成机制驱动树突和轴突的发育和再生
- 批准号:
23K21316 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Characterizing Wnt Signaling Pathways in Axon Guidance
轴突引导中 Wnt 信号通路的特征
- 批准号:
10815443 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
2023 NINDS Landis Mentorship Award - Administrative Supplement to NS121106 Control of Axon Initial Segment in Epilepsy
2023 年 NINDS 兰迪斯指导奖 - NS121106 癫痫轴突初始段控制的行政补充
- 批准号:
10896844 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Does phosphorylation regulation of the axon initial segment cytoskeleton improve behavioral abnormalities in ADHD-like animal models?
轴突起始段细胞骨架的磷酸化调节是否可以改善 ADHD 样动物模型的行为异常?
- 批准号:
23KJ1485 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Loss-of-function variants of the axon death protein SARM1 and protection from human neurodegenerative disease
轴突死亡蛋白 SARM1 的功能丧失变体和对人类神经退行性疾病的保护
- 批准号:
2891744 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Studentship
Collaborative Research: Evolution of ligand-dependent Robo receptor activation mechanisms for axon guidance
合作研究:用于轴突引导的配体依赖性 Robo 受体激活机制的进化
- 批准号:
2247939 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Understanding the degeneration of axon and nerve terminals in Alzheimer's disease and related dementia brain
了解阿尔茨海默病和相关痴呆大脑中轴突和神经末梢的变性
- 批准号:
10661457 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Unlocking BIN1 function in oligodendrocytes and support of axon integrity
解锁少突胶质细胞中的 BIN1 功能并支持轴突完整性
- 批准号:
10901005 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
The role of RNA methylation in cytoskeleton regulation during axon development
RNA甲基化在轴突发育过程中细胞骨架调节中的作用
- 批准号:
22KF0399 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for JSPS Fellows














{{item.name}}会员




