Next-gen Opto-GPCRs: spatiotemporal simulation of neuromodulator signaling
下一代 Opto-GPCR:神经调节信号传导的时空模拟
基本信息
- 批准号:9213972
- 负责人:
- 金额:$ 110.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-09 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsActivities of Daily LivingAddressAdoptedAdoptionAnimal ModelAnimalsAppetitive BehaviorArchitectureArrestinsBehaviorBehavioralBiochemicalBiochemistryBiologyBoxingBrainBrain DiseasesCannulasCell NucleusCellsClinicalColorCommunicationCommunitiesComplexCorticotropin-Releasing HormoneDissectionDopamineEngineeringFiber OpticsG Protein-Coupled Receptor SignalingG-Protein-Coupled ReceptorsGTP-Binding ProteinsGenerationsGeneticGoalsHealthHumanImageIn VitroIon ChannelIon PumpsIonsKnowledgeLigandsLightMapsMediatingMental disordersMetalsMethodsModelingMolecularMonitorMorphologic artifactsMusNeurobiologyNeurodegenerative DisordersNeuromodulatorNeuronsNeuropeptidesNeurosciencesNorepinephrineOpioidOpsinOrganismPharmacologyPhysiological ProcessesPhysiologyProcessPumpReceptor SignalingResolutionSeriesSerotoninSignal PathwaySignal TransductionSliceStructureSystemTechniquesTechnologyTestingTimeTranslatingTubeVariantViralWireless TechnologyWorkabstractingawakebasebiological systemsbrain tissuecell typedesigndesigner receptors exclusively activated by designer drugshypocretinin vivoinnovationmonoaminemultidisciplinarymutantneural circuitneurophysiologyneuroregulationneurotechnologynew technologynext generationnoveloptogeneticspeptide Greceptorrelating to nervous systemresearch studysimulationspatiotemporaltool
项目摘要
Project Summary/Abstract: The emerging field of optogenetics — using light to engage biological systems
— holds tremendous promise for dissection of neural circuits, cellular signaling and manipulating
neurophysiological systems in awake, behaving animals. However, the technological limits for implementing
optogenetics in dissecting neuromodulators in awake, freely-moving behavior is clear while working with
paradigms that require discrete spatiotemporal control of receptor signaling and when investigating neural
circuits that have very small diverse, “hard to reach” architecture, such as heterogeneous brain nuclei. To
engage neuropharmacological receptor substrates, neuroscientists in nearly every field use cannulas (simple
metal tubes) and have more recently adopted tethered fiber optics for in vivo optogenetics to control local
release of neuromodulator monoamine or neuropeptides. Unfortunately, these current methods are rather
limited and difficult to implement because they severely limit the spatiotemporal control over receptor signaling
pathways in discrete cell types. Moreover, current technology lacks a full tool box for multiplexed, subcellular,
spatiotemporal control of G protein coupled receptor signaling, the predominant means for neuromodulator
communication in the brain. For these reasons, an innovative effort combining neuroscience with biochemistry
and pharmacology was necessary in order to bring spatial-temporal in vitro and in vivo control over GPCR-
neuromodulator signaling. Therefore, here we directly address the central goals of this RFA-NS-16-775 in the
following manner. The central goal of this proposal is to develop a cutting-edge v2.0 Opto-XR receptors that
spatially and temporally control neuromodulator signaling in vitro and in freely moving animals. We have
proposed an uniquely integrated approach to achieve this goal that brings pharmacologists, physiologists,
biochemists, and neuroscientists together in a unique parallel manner. In the two specific aims we will develop
and test these novel tools in vitro and in vivo: 1) To develop mutant Gi and Gs, Opto-XR v2.0 receptors with
greater signaling dynamics and altered color spectra and sensitivity using structure-function analyses and
thorough in vitro characterization; and 2) To develop utility and characterize Gi and Gs versions of Opto-XR
v2.0 constructs in vivo and in models of freely-moving behavior using both traditional and wireless optogenetic
approaches. Successful completion of the proposal will provide the wider community of neuroscience with a
long awaited spatiotemporal manipulation of GPCRs – neuromodulator signaling within neural circuits in awake
freely behaving animals. This new technology will also further widen the field for approaches that are capable
of discrete control and optodynamic simulation of neuromodulator function in brain tissue.
项目摘要/摘要:光遗传学的新兴领域--利用光参与生物系统
-在解剖神经电路、细胞信号和操纵方面有着巨大的前景
清醒的、行为正常的动物的神经生理系统。然而,实施的技术限制
在清醒、自由运动行为中解剖神经调节器的光遗传学在与
需要对受体信号进行离散时空控制的范例,以及在研究神经时
具有非常小的多样的、“难以到达”的结构的电路,例如不同种类的大脑核团。至
使用神经药物受体底物,几乎每个领域的神经科学家都使用插管(简单
金属管),以及最近采用系留光纤用于体内光遗传学以控制局部
神经调节剂单胺或神经肽的释放。不幸的是,这些目前的方法相当于
有限且难以实现,因为它们严重限制了对受体信号的时空控制
离散细胞类型中的通路。此外,目前的技术缺乏一个完整的工具箱,用于多路、亚蜂窝、
神经调节剂的主要手段--G蛋白偶联受体信号的时空调控
大脑中的交流。出于这些原因,一项将神经科学与生物化学相结合的创新努力
而药理学是必要的,以便在体外和体内对gpr进行时空控制。
神经调节剂信号。因此,我们在这里直接讨论RFA-NS-16-775的核心目标
循规蹈矩。这项提议的中心目标是开发一种尖端的v2.0 Opto-XR受体,
在体外和自由活动的动物中,在空间和时间上控制神经调节剂信号。我们有
提出了一种独特的综合方法来实现这一目标,它将药理学家、生理学家、
生物化学家和神经学家以一种独特的平行方式聚集在一起。在我们将制定的两个具体目标中
并在体外和体内测试这些新工具:1)开发突变型Gi和Gs,Opto-XR v2.0受体
使用结构-功能分析和
深入的体外鉴定;和2)开发实用性和鉴定Gi和Gs版本的Opto-XR
V2.0使用传统和无线光生技术在活体和自由移动行为模型中构建
接近了。该提案的成功完成将为更广泛的神经科学界提供
期待已久的GPCRs时空操作-清醒状态下神经回路内的神经调制信号
行为自由的动物。这项新技术还将进一步拓宽有能力的方法的领域
对脑组织中神经调节器功能的离散控制和光动力学模拟。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael R. Bruchas其他文献
A cluster of neuropeptide S neurons regulates breathing and arousal
一群神经肽 S 神经元调节呼吸和觉醒
- DOI:
10.1016/j.cub.2023.11.018 - 发表时间:
2023-12-18 - 期刊:
- 影响因子:7.500
- 作者:
Christopher Caleb Angelakos;Kasey S. Girven;Yin Liu;Oscar C. Gonzalez;Keith R. Murphy;Kim J. Jennings;William J. Giardino;Larry S. Zweifel;Azra Suko;Richard D. Palmiter;Stewart D. Clark;Mark A. Krasnow;Michael R. Bruchas;Luis de Lecea - 通讯作者:
Luis de Lecea
Recapitulating phenotypes of alcohol dependence via overexpression of emOprk1/em in the ventral tegmental area of non-dependent TH::Cre rats
通过在非依赖性 TH::Cre 大鼠腹侧被盖区中过表达 emOprk1/em 来概括酒精依赖的表型
- DOI:
10.1016/j.neuropharm.2023.109457 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:4.600
- 作者:
Gaetan Lepreux;Grace E. Shinn;Gengze Wei;Azra Suko;George Concepcion;Sunil Sirohi;Bok Soon Go;Michael R. Bruchas;Brendan M. Walker - 通讯作者:
Brendan M. Walker
Circuit dynamics of <em>in vivo</em> dynorphn release in the nucleus accumbens
- DOI:
10.1016/j.alcohol.2017.02.258 - 发表时间:
2017-05-01 - 期刊:
- 影响因子:
- 作者:
Ream Al-Hasani;Jenny M. Wong;Jordan G. McCall;Omar S. Mabrouk;Gavin Schmitz;Kirsten Porter-Stransky;Julio M. Bernardi;Brandon Aragona;Robert T. Kennedy;Michael R. Bruchas - 通讯作者:
Michael R. Bruchas
An integrated microfluidic and fluorescence platform for probing emin vivo/em neuropharmacology
一种用于探究体内神经药理学的集成微流控和荧光平台
- DOI:
10.1016/j.neuron.2025.03.017 - 发表时间:
2025-05-21 - 期刊:
- 影响因子:15.000
- 作者:
Sean C. Piantadosi;Min-Kyu Lee;Mingzheng Wu;Huong Huynh;Raudel Avila;Catalina A. Zamorano;Carina Pizzano;Yixin Wu;Rachael Xavier;Maria Stanslaski;Jiheon Kang;Sarah Thai;Youngdo Kim;Jinglan Zhang;Yonggang Huang;Yevgenia Kozorovitskiy;Cameron H. Good;Anthony R. Banks;John A. Rogers;Michael R. Bruchas - 通讯作者:
Michael R. Bruchas
Dynorphin modulates reward-seeking actions through a pallido-amygdala cholinergic circuit
强啡肽通过苍白球 - 杏仁核胆碱能回路调节寻求奖赏的行为
- DOI:
10.1016/j.neuron.2025.03.018 - 发表时间:
2025-06-04 - 期刊:
- 影响因子:15.000
- 作者:
Qingtao Sun;Mingzhe Liu;Wuqiang Guan;Xiong Xiao;Chunyang Dong;Michael R. Bruchas;Larry S. Zweifel;Yulong Li;Lin Tian;Bo Li - 通讯作者:
Bo Li
Michael R. Bruchas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael R. Bruchas', 18)}}的其他基金
Optopharmacology and Sensors for Dissecting Opioid Action In Vivo
用于剖析阿片类药物体内作用的光药理学和传感器
- 批准号:
10268988 - 财政年份:2020
- 资助金额:
$ 110.38万 - 项目类别:
Project 4_Bruchas : Circuit-level Approaches for Dissecting Approach/Avoidance Behaviors Mediated by Nociceptin Systems in Mice
项目 4_Bruchas:用于解剖小鼠伤害感受素系统介导的接近/回避行为的电路级方法
- 批准号:
10601138 - 财政年份:2020
- 资助金额:
$ 110.38万 - 项目类别:
Optopharmacology and Sensors for Dissecting Opioid Action In Vivo
用于剖析阿片类药物体内作用的光药理学和传感器
- 批准号:
10040355 - 财政年份:2020
- 资助金额:
$ 110.38万 - 项目类别:
Optopharmacology and Sensors for Dissecting Opioid Action In Vivo
用于剖析阿片类药物体内作用的光药理学和传感器
- 批准号:
10867978 - 财政年份:2020
- 资助金额:
$ 110.38万 - 项目类别:
Optopharmacology and Sensors for Dissecting Opioid Action In Vivo
用于剖析阿片类药物体内作用的光药理学和传感器
- 批准号:
10471283 - 财政年份:2020
- 资助金额:
$ 110.38万 - 项目类别:
Project 4_Bruchas : Circuit-level Approaches for Dissecting Approach/Avoidance Behaviors Mediated by Nociceptin Systems in Mice
项目 4_Bruchas:用于解剖小鼠伤害感受素系统介导的接近/回避行为的电路级方法
- 批准号:
10383688 - 财政年份:2020
- 资助金额:
$ 110.38万 - 项目类别:
Next-gen Opto-GPCRs: spatiotemporal simulation of neuormodulator signaling
下一代 Opto-GPCR:神经调节信号传导的时空模拟
- 批准号:
9815886 - 财政年份:2018
- 资助金额:
$ 110.38万 - 项目类别:
Decoding Locus Coeruleus Neural Circuits and Signaling in Negative Affect
解码蓝斑神经回路和负面情绪中的信号传导
- 批准号:
9357671 - 财政年份:2016
- 资助金额:
$ 110.38万 - 项目类别:
Decoding Locus Coeruleus Neural Circuits and Signaling In Negative Affect
解码蓝斑神经回路和消极情绪中的信号传导
- 批准号:
10518981 - 财政年份:2016
- 资助金额:
$ 110.38万 - 项目类别:
Decoding Locus Coeruleus Neural Circuits and Signaling In Negative Affect
解码蓝斑神经回路和负面情绪中的信号传导
- 批准号:
10676944 - 财政年份:2016
- 资助金额:
$ 110.38万 - 项目类别:
相似海外基金
Determining 4-Dimensional Foot Loading Profiles of Healthy Adults across Activities of Daily Living
确定健康成年人日常生活活动的 4 维足部负荷曲线
- 批准号:
2473795 - 财政年份:2024
- 资助金额:
$ 110.38万 - 项目类别:
Studentship
Developing a trunk function assessment for hemiplegics. -For improving activities of daily living-
开发偏瘫患者的躯干功能评估。
- 批准号:
23K10540 - 财政年份:2023
- 资助金额:
$ 110.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Relation with the activities of daily living and the subjective values among people with social withdrawal
社交退缩者日常生活活动与主观价值观的关系
- 批准号:
23K16596 - 财政年份:2023
- 资助金额:
$ 110.38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CRII: RI: Understanding Activities of Daily Living in Indoor Scenarios
CRII:RI:了解室内场景中的日常生活活动
- 批准号:
2245652 - 财政年份:2023
- 资助金额:
$ 110.38万 - 项目类别:
Standard Grant
Sources of vulnerability among those using homecare despite having no limitations in Activities of Daily Living. An intersectionality analysis
尽管日常生活活动没有限制,但使用家庭护理的人的脆弱性来源。
- 批准号:
499112 - 财政年份:2023
- 资助金额:
$ 110.38万 - 项目类别:
Operating Grants
Association between Nursing Care and Prognosis and Activities of Daily Living in Acute Stroke patients by using Big Data.
利用大数据研究急性脑卒中患者的护理与预后和日常生活活动的关系。
- 批准号:
23K16412 - 财政年份:2023
- 资助金额:
$ 110.38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Synergizing home health rehabilitation therapy to optimize patients’ activities of daily living
协同家庭健康康复治疗,优化患者的日常生活活动
- 批准号:
10429480 - 财政年份:2022
- 资助金额:
$ 110.38万 - 项目类别:
Effects of a model of nurses-occupational therapists collaborative practice on activities of daily living in elderly patients
护士-职业治疗师合作实践模式对老年患者日常生活活动的影响
- 批准号:
22K17540 - 财政年份:2022
- 资助金额:
$ 110.38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Assessing a Novel Virtual Environment that Primes Individuals Living with AD/ADRD to Accomplish Activities of Daily Living.
评估一种新颖的虚拟环境,该环境可以帮助 AD/ADRD 患者完成日常生活活动。
- 批准号:
10668160 - 财政年份:2022
- 资助金额:
$ 110.38万 - 项目类别:
Synergizing home health rehabilitation therapy to optimize patients’ activities of daily living
协同家庭健康康复治疗,优化患者的日常生活活动
- 批准号:
10621820 - 财政年份:2022
- 资助金额:
$ 110.38万 - 项目类别:














{{item.name}}会员




