Regulation of Vesicle Traffic
囊泡交通的调节
基本信息
- 批准号:9070963
- 负责人:
- 金额:$ 49.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-01 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesivesAnimalsBiochemicalBrainCellsCellular biologyComplexCoupledEngineeringEukaryotaExocytosisFatty AcidsFundingGRASP geneGenetic studyGoalsGolgi ApparatusImageIndividualLifeMembraneMembrane FusionModelingNanoscopyOrganellesPalmitatesPhysical ChemistryPhysiologyProteinsReactionRegulationResearchSNAP receptorSignal TransductionSynaptic VesiclesTestingTimeVesicleYeastsbaseenzyme substrateinformation processingmillisecondmolecular assembly/self assemblynanoneurotransmitter releaseoperationprotein transportpublic health relevancesensorsynaptotagminsynthetic biologytemporal measurementtrafficking
项目摘要
DESCRIPTION (provided by applicant): This MIRA proposal consolidates funded research on three central problems in cell biology concerning membrane dynamics: synaptic vesicle exocytosis, dynamic membrane contacts, and synthetic biology-enabled tests of Golgi models. Synaptic vesicles fuse to release neurotransmitters in less than 1 msec after Ca++ enters, enabling effective information processing in the brain. In spite of all of the progress in our understanding of membrane fusion generally, it is remarkable that we have no clear explanation of this. Our goal for the next 5-10 years is to develop a detailed structural biochemical and biophysical understanding of how neurotransmitter release is coupled to Ca++ and how it can occur so very rapidly. Two related problems must be solved to provide an answer: how is the half-zippered SNARE complex stabilized ("clamped") from completing fusion spontaneously? How can fusion be completed 100-1000 times faster than permitted by the physical chemistry of individual SNAREs? Our general hypothesis is that sub-millisecond exocytosis is achieved in some way by a supra-molecular assembly involving the Ca++ sensor synaptotagmin and the clamp/activator complexin that harnesses and synchronizes the force of many SNAREs co-operatively to enable explosive release. Membrane contacts generally are dynamic entities, forming and breaking as the result of signals and shifts in physiology. The Golgi stack is based on such membrane contacts, and despite the fact that it looks like a stable entity, our recent and surprising results reveal that the principal proteins responsible for registered stacking (GRASP proteins) cycle on and off the membrane every minute! Nanoscopy-based imaging of suggests this is due to rapid cycles of fatty acid (palmitate) addition and cleavage in specialized transien adhesive nano-domains. Over the next 5 years we hope to elucidate the mechanisms involved using real-time nanoscopy of the enzymes, substrates and their products in living cells combined with detailed biochemical, biophysical, and genetic studies. The Golgi apparatus is found in all eukaryotes, and yet has the dubious and remarkable distinction of being the last remaining membrane organelle whose basic principle of operation is still unknown! In spite of decades of intensive research we still debate how proteins traffic across the Golgi stack in animal cells, simply because we lack the ability to directly observe protein transfer reactions in living cells at sufficient spatial/temporal resolution. The new idea we are developing is to engineer the conversion of the animal Golgi stack into a more yeast-like unstacked topology in living cells, so that we can now much more easily track individual cisternae, vesicles and tubules in relation to transport cargo and machinery, especially with the help of dynamic nanoscopy now possible in our department.
描述(由适用提供):该MIRA建议巩固了有关膜动力学细胞生物学三个中心问题的资助研究:合成蔬菜胞吐作用,动态膜接触和高尔基模型的合成生物学测试。 CA ++后,突触蔬菜融合以在小于1毫秒内释放神经递质,从而在大脑中有效地处理。尽管我们对膜融合的理解中的所有进步都大致,但值得注意的是,我们对此没有明确的解释。我们接下来5 - 10年的目标是对神经递质释放如何与Ca ++结合以及如何如此迅速地发生详细的结构生化和生物物理理解。必须解决两个相关的问题以提供答案:半拉链的军鼓复合物如何稳定(“夹紧”),从而获得了融合的融合?融合如何比单个贪食的物理化学允许的速度快100-1000倍?我们的总体假设是,涉及Ca ++传感器突触剂的上分子组件和夹具/激活蛋白以某种方式实现了亚毫秒的胞吐作用,该组合可以刺激并同步许多SNARES的力,从而同步许多SNARES的力量,以启用爆炸性释放。膜接触通常是动态实体,由于生理学的信号和变化而形成和破裂。 Golgi堆栈基于这种膜接触,并承担这样一个事实,即它看起来像一个稳定的实体,我们最近的令人惊讶的结果表明,主蛋白负责注册堆叠(GRASP蛋白)每分钟和膜下的循环!基于纳米镜检查的成像表明,这是由于未来5年的脂肪酸(棕榈酸酯)添加和裂解的快速循环,我们希望在活细胞中使用酶,底物及其产物的实时纳米纳米镜阐明涉及的机制,并结合了详细的生物化学,生物生物物质研究和遗传研究。在所有真核生物中都发现了高尔基体设备,但具有令人怀疑和显着的区别,即是最后剩下的膜细胞器,其基本操作的基本原理仍然未知!尽管进行了数十年的深入研究,但我们仍在争论动物细胞中高尔基体堆栈的蛋白质如何流动,这仅仅是因为我们缺乏直接观察活细胞中蛋白质转移反应以足够的空间/时间分辨率的能力。我们正在开发的新想法是要设计动物高尔基堆积的转化为活细胞中更类似酵母的未堆积拓扑,以便我们现在可以更轻松地跟踪单个cisternae,蔬菜和块茎,尤其是在我们部门的动态纳米镜头的帮助下,尤其是在我们部门的帮助下。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JAMES ROTHMAN其他文献
JAMES ROTHMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JAMES ROTHMAN', 18)}}的其他基金
"Suspended" Bilayers: New Technology to Study the Dynamics of Membrane Structure
“悬浮”双层:研究膜结构动力学的新技术
- 批准号:
7943069 - 财政年份:2009
- 资助金额:
$ 49.37万 - 项目类别:
"Suspended" Bilayers: New Technology to Study the Dynamics of Membrane Structure
“悬浮”双层:研究膜结构动力学的新技术
- 批准号:
7833610 - 财政年份:2009
- 资助金额:
$ 49.37万 - 项目类别:
Aggregation and Clearance of Mutant Huntingtin(RMI)
突变亨廷顿蛋白(RMI)的聚集和清除
- 批准号:
7057708 - 财政年份:2005
- 资助金额:
$ 49.37万 - 项目类别:
相似国自然基金
水凝胶包封的永生化hBMSCs在肿瘤切除残腔中分泌cRGD-SWL-PE38KDEL重组蛋白治疗胶质瘤的研究
- 批准号:81802481
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
生化解析哺乳动物细胞自噬体与溶酶体膜融合的调控机制
- 批准号:31870830
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
CRIP1与斑马鱼衰老的相关性及作用机制研究
- 批准号:31801970
- 批准年份:2018
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
七鳃鳗核转录因子(NF-кB)在TLR信号通路介导的先天性免疫应答中的活性及其机制的研究
- 批准号:31801973
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
缅甸蟒免疫调节肽Cb-CATH1抗耐甲氧西林金黄色葡萄球菌感染的机制研究
- 批准号:31872223
- 批准年份:2018
- 资助金额:61.0 万元
- 项目类别:面上项目
相似海外基金
Reconfigurable 3D Origami Probes for Multi-modal Neural Interface
用于多模态神经接口的可重构 3D 折纸探针
- 批准号:
10738994 - 财政年份:2023
- 资助金额:
$ 49.37万 - 项目类别:
2023 Microbial Adhesion and Signal Transduction Gordon Research Conferences and Seminar
2023年微生物粘附和信号转导戈登研究会议和研讨会
- 批准号:
10666171 - 财政年份:2023
- 资助金额:
$ 49.37万 - 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
- 批准号:
10741261 - 财政年份:2022
- 资助金额:
$ 49.37万 - 项目类别:
A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
一种可喷雾的组织结合水凝胶,用于防止术后心脏粘连
- 批准号:
10546558 - 财政年份:2022
- 资助金额:
$ 49.37万 - 项目类别:
The roles of Lyme spirochete adhesins in hematogenous dissemination
莱姆病螺旋体粘附素在血行传播中的作用
- 批准号:
10570186 - 财政年份:2022
- 资助金额:
$ 49.37万 - 项目类别: