Regulation of Vesicle Traffic
囊泡交通的调节
基本信息
- 批准号:9070963
- 负责人:
- 金额:$ 49.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-01 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesivesAnimalsBiochemicalBrainCellsCellular biologyComplexCoupledEngineeringEukaryotaExocytosisFatty AcidsFundingGRASP geneGenetic studyGoalsGolgi ApparatusImageIndividualLifeMembraneMembrane FusionModelingNanoscopyOrganellesPalmitatesPhysical ChemistryPhysiologyProteinsReactionRegulationResearchSNAP receptorSignal TransductionSynaptic VesiclesTestingTimeVesicleYeastsbaseenzyme substrateinformation processingmillisecondmolecular assembly/self assemblynanoneurotransmitter releaseoperationprotein transportpublic health relevancesensorsynaptotagminsynthetic biologytemporal measurementtrafficking
项目摘要
DESCRIPTION (provided by applicant): This MIRA proposal consolidates funded research on three central problems in cell biology concerning membrane dynamics: synaptic vesicle exocytosis, dynamic membrane contacts, and synthetic biology-enabled tests of Golgi models. Synaptic vesicles fuse to release neurotransmitters in less than 1 msec after Ca++ enters, enabling effective information processing in the brain. In spite of all of the progress in our understanding of membrane fusion generally, it is remarkable that we have no clear explanation of this. Our goal for the next 5-10 years is to develop a detailed structural biochemical and biophysical understanding of how neurotransmitter release is coupled to Ca++ and how it can occur so very rapidly. Two related problems must be solved to provide an answer: how is the half-zippered SNARE complex stabilized ("clamped") from completing fusion spontaneously? How can fusion be completed 100-1000 times faster than permitted by the physical chemistry of individual SNAREs? Our general hypothesis is that sub-millisecond exocytosis is achieved in some way by a supra-molecular assembly involving the Ca++ sensor synaptotagmin and the clamp/activator complexin that harnesses and synchronizes the force of many SNAREs co-operatively to enable explosive release. Membrane contacts generally are dynamic entities, forming and breaking as the result of signals and shifts in physiology. The Golgi stack is based on such membrane contacts, and despite the fact that it looks like a stable entity, our recent and surprising results reveal that the principal proteins responsible for registered stacking (GRASP proteins) cycle on and off the membrane every minute! Nanoscopy-based imaging of suggests this is due to rapid cycles of fatty acid (palmitate) addition and cleavage in specialized transien adhesive nano-domains. Over the next 5 years we hope to elucidate the mechanisms involved using real-time nanoscopy of the enzymes, substrates and their products in living cells combined with detailed biochemical, biophysical, and genetic studies. The Golgi apparatus is found in all eukaryotes, and yet has the dubious and remarkable distinction of being the last remaining membrane organelle whose basic principle of operation is still unknown! In spite of decades of intensive research we still debate how proteins traffic across the Golgi stack in animal cells, simply because we lack the ability to directly observe protein transfer reactions in living cells at sufficient spatial/temporal resolution. The new idea we are developing is to engineer the conversion of the animal Golgi stack into a more yeast-like unstacked topology in living cells, so that we can now much more easily track individual cisternae, vesicles and tubules in relation to transport cargo and machinery, especially with the help of dynamic nanoscopy now possible in our department.
描述(由申请人提供):该MIRA提案巩固了对细胞生物学中有关膜动力学的三个核心问题的资助研究:突触囊泡胞吐,动态膜接触和高尔基体模型的合成生物学启用测试。突触囊泡在Ca++进入后不到1毫秒内融合释放神经递质,使大脑中的信息处理有效。尽管我们对膜融合的理解总体上取得了进展,但值得注意的是,我们对此没有明确的解释。我们在未来5-10年的目标是发展一个详细的结构生物化学和生物物理的理解神经递质释放是如何耦合到Ca++和它如何可以发生得如此之快。两个相关的问题必须解决,以提供一个答案:如何是半拉链陷阱复杂的稳定(“夹紧”),从完成融合自发?核聚变是如何以比单个SNARE的物理化学允许的速度快100-1000倍的速度完成的?我们的一般假设是,亚毫秒胞吐是以某种方式通过超分子组装实现的,该组装涉及Ca++传感器突触结合蛋白和钳/激活剂复合物,该复合物利用和抑制许多SNARE的力量,共同实现爆炸性释放。膜接触通常是动态实体,由于信号和生理变化而形成和破坏。高尔基体堆叠是基于这样的膜接触,尽管它看起来像一个稳定的实体,但我们最近令人惊讶的结果表明,负责登记堆叠的主要蛋白质(GRASP蛋白质)每分钟都在膜上循环!基于纳米显微镜的成像表明,这是由于脂肪酸(棕榈酸酯)添加和裂解在专门的transien粘合剂纳米域的快速循环。在接下来的5年里,我们希望利用活细胞中酶、底物及其产物的实时纳米显微镜,结合详细的生化、生物物理和遗传研究来阐明所涉及的机制。高尔基体存在于所有的真核生物中,但它是最后剩下的膜细胞器,其基本工作原理仍然未知,这一点值得怀疑,也值得注意!尽管几十年来的深入研究,我们仍然争论蛋白质如何在动物细胞中的高尔基体堆叠中运输,仅仅是因为我们缺乏以足够的空间/时间分辨率直接观察活细胞中蛋白质转移反应的能力。我们正在开发的新想法是将动物高尔基体堆叠转换成活细胞中更像酵母的非堆叠拓扑结构,这样我们现在就可以更容易地跟踪与运输货物和机械有关的单个池,囊泡和小管,特别是在我们部门现在可以使用的动态纳米镜的帮助下。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JAMES ROTHMAN其他文献
JAMES ROTHMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JAMES ROTHMAN', 18)}}的其他基金
"Suspended" Bilayers: New Technology to Study the Dynamics of Membrane Structure
“悬浮”双层:研究膜结构动力学的新技术
- 批准号:
7943069 - 财政年份:2009
- 资助金额:
$ 49.37万 - 项目类别:
"Suspended" Bilayers: New Technology to Study the Dynamics of Membrane Structure
“悬浮”双层:研究膜结构动力学的新技术
- 批准号:
7833610 - 财政年份:2009
- 资助金额:
$ 49.37万 - 项目类别:
Aggregation and Clearance of Mutant Huntingtin(RMI)
突变亨廷顿蛋白(RMI)的聚集和清除
- 批准号:
7057708 - 财政年份:2005
- 资助金额:
$ 49.37万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 49.37万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 49.37万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 49.37万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 49.37万 - 项目类别:
Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
- 批准号:
2889694 - 财政年份:2023
- 资助金额:
$ 49.37万 - 项目类别:
Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 49.37万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 49.37万 - 项目类别:
Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 49.37万 - 项目类别:
Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 49.37万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 49.37万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)














{{item.name}}会员




