Preclinical drug development in pancreatic cancer
胰腺癌的临床前药物开发
基本信息
- 批准号:9343856
- 负责人:
- 金额:$ 113.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:APC geneAXIN1 geneAccountingAchievementAddressAdjuvant TherapyAdverse effectsAmerican Cancer SocietyAminesAnimal ModelAnimalsBasic ScienceBindingBiodistributionBiological AssayCCND1 geneCCRCREBBP geneCTNNB1 geneCancer PatientCancer Therapy Evaluation ProgramCancer cell lineCell FractionCell LineCell physiologyCellsCessation of lifeChromatin Remodeling FactorClinicalClinical ResearchClinical TrialsCollaborationsCuesDNA RepairDependencyDevelopmentDiagnosisDiseaseDoseDrug CombinationsDrug KineticsEP300 geneEvaluationFRAP1 geneFailureFamily suidaeFlow CytometryFormulationGene ExpressionGene Expression ProfilingGenesGenotypeGlycolysisGoalsGrowthHomeostasisHumanImidazoleImmuneImmune responseImmune systemImmunityImmunotherapyInduction of ApoptosisKRAS2 geneLaboratoriesLeadershipLegal patentMADH4 geneMAP Kinase GeneMEKsMalignant NeoplasmsMalignant neoplasm of pancreasMannoseMeasurementMeasuresMediatingMedicalMetabolicMiniature SwineMitochondriaModelingMolecularMolecular ProfilingMusNeoplasm MetastasisNutrientOutcomePancreatic Ductal AdenocarcinomaPathway interactionsPatient SelectionPatientsPenetrationPeptidesPharmaceutical PreparationsPharmacologyPhasePhenotypePhosphoproteinsPlasmaPolypharmacyPopulationPreclinical Drug DevelopmentProductionProtein IsoformsRecurrenceRenal carcinomaResearchResistanceRespirationRodentSTK11 geneSafetySeriesSideSignal TransductionSmall Inducible Cytokine A3Somatic MutationStagingStructureTP53 geneTestingTissuesToxic effectTransforming Growth Factor betaTransgenic AnimalsTransgenic OrganismsTranslationsTumor ImmunityUnited StatesVariantWNT Signaling PathwayWorkXenograft procedurebasecancer cellcancer geneticscancer stem cellchemotherapydesigndrug developmentdrug distributioneffective therapygemcitabinegenetic makeupgenetic variantimprovedin vitro activityin vivoinhibitor/antagonistinnovationknock-downlaboratory developmentloss of functionmTOR InhibitormTOR inhibitionmacrophagemalignant breast neoplasmmetabolic profilemortalitymouse modelmutational statusnovelnovel strategiesnovel therapeutic interventionnovel therapeuticspancreatic cancer cellspancreatic neoplasmpre-clinicalpredicting responsepreventprogramsreceptorreceptor bindingresearch clinical testingresearch studyresponseresponse biomarkerscreeningsmall moleculesmall molecule inhibitorstemnesstargeted agenttreatment strategytumortumor initiation
项目摘要
My laboratory aims to address the unmet medical need of more effective treatments for pancreas cancer patients by developing new treatment approaches. The American Cancer Society estimates 53,070 new cases and 41,780 deaths from pancreatic cancer in the United States during 2016 and predicts that pancreatic cancer will rank 2nd of all cancer-related mortalities by the year 2030. Up to 90% of pancreatic cancer patients succumb to the disease within the first year of diagnosis. Neither current chemotherapy nor molecular therapy provides patients with an extension of survival measured by more than a few months, or the hope for sustained tumor regressions or cure. The overall research goals and scientific objectives of the different drug development efforts conducted in my laboratory are the development of novel therapeutics in pancreas cancer. These include studies from early structure-activity, in vitro, cell-based and in vivo evaluations, to IND enabling studies and clinical development. To reduce later failure all drug development efforts are guided by hypothesis-driven mechanism of action studies including early efficacy, toxicity, and pharmacokinetic studies in orthotopic, patient-derived xenotransplantation, or transgenic animal models. Scientific achievements in the last year include: 1. Preclinical and clinical development of metarrestin Metarrestin is a novel small molecule inhibitor with selective activity against the metastatic phenotype of cancer cells. It has impressive activity in pancreatic cancer metastasis models. The drug development project 'Metarrestin, a new approach towards metastasis' co-presented by me to NCIs NExT program was evaluated as 'top tier, ranked 2nd out of 28 applications, average score 2.0'. The near term goals of the metarrestin program are i. completion of IND enabling studies, including GLP long term toxicity in swine (miniature pigs) ii. compile and file IND application with FDA and commence phase I safety and MTD clinical studies with this agent at CCR The program has now moved into the late preclinical stage, and expected for 2017, to advance into clinical testing. The proposal 'Assessment of Efficacy and Biodistribution of IND Candidate Compound Metarrestin in Preclinical Murine Models for Pancreatic Ductal Adenocarcinoma' has been approved by CCR Leadership and included into CCR CAPRs portfolio. Extensive rodent pharmacology and PK studies in transgenic KPC mice have shown excellent tissue penetration of the drug with plasma:tumor AUC ratios exceeding 1:10 and intratumoral drug levels close to 100uM at non-toxic dose levels. Development of a human formulation has been completed. A pilot of PK studies in swine (mini pigs) has been started, to be followed by long term GLP toxicity studies. Production of 2kg of metarrestin produced under Good Manufacturing Practices (GMP) to be used for IND enabling GLP toxicity studies and human studies has been started. 2. Preclinical development of the 'biosimilar' anti-cancer peptide RP-182 The discovery of the strong anti-cancer activity of RP-182 in murine pancreatic tumors in our laboratory has led to a patent filing of such peptides as novel effective treatment of cancers (Int'l PCT Patent Application No. PCT/US15/55305). My laboratory has shown that RP-182 binds CD206 and targets CD206 positive M2 tumor-associated macrophages, and increases intratumoral immunity through reduction and reprogramming of this generally immune suppressive immune cell population towards an anti-tumor M1 phenotype. Additionally, RP-182 downregulates in murine pancreatic cancers PD-1L expression on cancer cells, and the addition of an anti-PD-1L immune check point inhibitor extends survival of RP-182-treated animals. Overall, results show RP-182 suppresses innate immune suppressive cues in pancreatic cancers acting as a 'biosimilar' (to mannose moeities of bioorganisms recognized by CD206 mannose-binding receptors on macrophages) and inducing death and reprogramming of CD206 positive immune cells in these tumors. A PK assay for in vivo measurements of RP-182 is now available to interrogate the pharmacology of RP-182 which will move the program of targeting the CD206 axis of the innate immune system, as part of anti-cancer combination immunotherapy approaches, into late preclinical development. 3. Preclinical development of the stem cell inhibitor -8382 The scientific goal of this program developed in my laboratory is to show selective anti-cancer stem cell activity of this small molecule inhibitor, which effectively suppresses metastasis formation, in comparison to gemcitabine chemotherapy in cell-based and in vivo assays of stemness. A series of spheroid clonogenicity assays, in vivo tumor initiation studies, and measures of stemness using flow cytometry including side population (SP) profiling experiments confirm a selective anti-cancer stem cell function of the inhibitor compared to gemcitabine. Two of the compounds new targets - TAOK3 and CDK7 - also promote cancer stemness targets. The molecule targets synergistically different mechanisms of DNA damage repair, a vulnerability of cancer stem cells. 4. Clinical development of RAS mutational isoform-directed anti-MAPK pathway therapy The major objective of this project is to proceed with clinical translation of our discovery of increased sensitivity of KRAS G12R mutational isoform-harboring cell lines and patient-derived xenotransplantation models. Unbiased gene expression analysis as well as loss of function of signaling nodes siREN screening [knockdown of signal transduction nodes; in collaboration with NCIs RAS Initiation of NCI Frederick] confirmed that different RAS genotypes are associated with different gene expression profiles and select signal transduction dependencies. A 20-patient phase II pilot treating patients whose tumor harbor G12R KRAS isoforms has been approved by the CCR Scientific Leadership Committee and CTEP which tests the hypothesis whether KRAS mutational isoforms represent an integral biomarker for response to anti-MEK therapy as novel therapy in 2nd line treatment of pancreas cancer and is a direct translation of our laboratory efforts. 5. Anti-PI3K/mTOR molecular therapy in pancreas cancer: genetic variants and activation of LKB1-AMPK signaling predict response to NVP-BEZ235 Correlation between somatic mutation status of a large panel of pancreatic cancer cell lines and drug phenotype resistance to PI3K/mTOR inhibition (no induction of apoptosis upon treatment with NVP-BEZ235) shows statistically significant associations between a. variants in the ARID1A or other genes of the chromatin remodeling complex SNF/SWI, and b. variants in any of the 11 genes APC, AXIN1, CCND1, CCND3, CTNNB1, CREBBP, EP300, MYC, RAC1, SMAD4, TP53 of the 98 genes involved in WNT signaling. and resistance to PI3K/mTOR inhibition. Phosphoprotein profiling of above cell lines and of patient-derived xenotrans-plantation models (PDX) treated with the PI3K/mTOR inhibitor showed increased AMPK activity in tumors resistant to PI3K/mTOR inhibition compared to sensitive PDX tumors. As AMPK is a major regulator of cell energy homeostasis, we compared metabolic profiles of resistant versus sensitive cell lines and found sharp differences between metabolic reliance on nutrients including increase in mitochondrial basal and maximum respiration and spare capacity in sensitive cell lines, and increased rate of glycolysis including glycolytic capacity and glycolytic reserve in resistant cell lines. The combination drug response evaluations of PI3K/mTOR inhibitors and inhibitors of glycolysis in PI3K/mTOR resistant cells to test for sensitization to PI3K/mTOR inhibition in the presence of glycolysis blockade as a novel therapeutic approach to pancreas cancer are currently ongoing.
我的实验室旨在通过开发新的治疗方法来解决胰腺癌患者未得到满足的更有效治疗的医疗需求。美国癌症协会估计,2016 年美国有 53,070 例新发胰腺癌病例,41,780 例死亡,并预测到 2030 年,胰腺癌将在所有癌症相关死亡率中排名第二。高达 90% 的胰腺癌患者在诊断的第一年内死于该病。目前的化疗和分子疗法都没有为患者提供几个月以上的生存期延长,也没有给患者带来肿瘤持续消退或治愈的希望。我的实验室进行的不同药物开发工作的总体研究目标和科学目标是开发胰腺癌的新疗法。这些包括从早期结构活性、体外、基于细胞和体内评估的研究,到 IND 支持研究和临床开发。为了减少以后的失败,所有药物开发工作都以假设驱动的作用机制研究为指导,包括原位、患者来源的异种移植或转基因动物模型中的早期疗效、毒性和药代动力学研究。去年的科研成果包括: 1. Metarrestin 的临床前和临床开发 Metarrestin 是一种新型小分子抑制剂,对癌细胞的转移表型具有选择性活性。它在胰腺癌转移模型中具有令人印象深刻的活性。我与 NCI NExT 项目共同提出的药物开发项目“Metarrestin,一种治疗转移的新方法”被评价为“顶级,在 28 项申请中排名第二,平均分 2.0”。 Metarestin 计划的近期目标是:完成 IND 授权研究,包括 GLP 对猪(小型猪)的长期毒性 ii.向 FDA 编制并向 FDA 提交 IND 申请,并在 CCR 开始使用该药物进行 I 期安全性和 MTD 临床研究。该项目现已进入临床前后期阶段,预计于 2017 年进入临床测试。 “评估 IND 候选化合物 Metarrestin 在胰腺导管腺癌临床前小鼠模型中的功效和生物分布”提案已获得 CCR 领导层批准,并纳入 CCR CAPR 组合。在转基因 KPC 小鼠中进行的广泛的啮齿动物药理学和 PK 研究表明,该药物具有出色的组织渗透性,血浆:肿瘤 AUC 比率超过 1:10,在无毒剂量水平下,瘤内药物水平接近 100uM。人类配方的开发已经完成。猪(小型猪)的 PK 研究试点已经启动,随后将进行长期 GLP 毒性研究。根据良好生产规范 (GMP) 生产的 2 公斤metarrestin 已开始生产,用于 IND 进行 GLP 毒性研究和人体研究。 2.“生物仿制药”抗癌肽RP-182的临床前开发我们实验室发现RP-182对小鼠胰腺肿瘤具有很强的抗癌活性,因此将该肽作为新型有效的癌症治疗方法申请了专利(国际PCT专利申请号PCT/US15/55305)。我的实验室已表明,RP-182 结合 CD206 并靶向 CD206 阳性 M2 肿瘤相关巨噬细胞,并通过减少这种普遍免疫抑制性免疫细胞群并将其重新编程为抗肿瘤 M1 表型来增强瘤内免疫。此外,RP-182 下调小鼠胰腺癌癌细胞中 PD-1L 的表达,并且添加抗 PD-1L 免疫检查点抑制剂可延长 RP-182 治疗动物的生存期。总体而言,结果显示 RP-182 抑制胰腺癌中的先天免疫抑制信号,充当“生物仿制药”(针对巨噬细胞上 CD206 甘露糖结合受体识别的生物有机体的甘露糖部分),并诱导这些肿瘤中 CD206 阳性免疫细胞的死亡和重新编程。现在可用于 RP-182 体内测量的 PK 测定来询问 RP-182 的药理学,这将使靶向先天免疫系统的 CD206 轴的计划(作为抗癌联合免疫治疗方法的一部分)进入后期临床前开发。 3. 干细胞抑制剂-8382的临床前开发 我实验室开发的这个项目的科学目标是显示这种小分子抑制剂的选择性抗癌干细胞活性,与吉西他滨化疗相比,在基于细胞和体内的干性测定中,它能有效抑制转移形成。一系列球体克隆性测定、体内肿瘤起始研究以及使用流式细胞术的干性测量,包括侧群 (SP) 分析实验,证实了与吉西他滨相比,该抑制剂具有选择性抗癌干细胞功能。其中两种新靶标化合物——TAOK3 和 CDK7——也促进癌症干细胞靶标。该分子协同作用不同的 DNA 损伤修复机制,这是癌症干细胞的一个弱点。 4. RAS 突变异构体定向抗 MAPK 通路疗法的临床开发 该项目的主要目标是继续将我们发现的 KRAS G12R 突变异构体携带细胞系和患者来源的异种移植模型敏感性增加的发现进行临床转化。无偏基因表达分析以及信号转导节点功能丧失 siREN 筛选 [信号转导节点的敲低;与 NCI Frederick 的 NCI RAS 启动合作]证实,不同的 RAS 基因型与不同的基因表达谱和选择信号转导依赖性相关。一项由 20 名患者组成的 II 期试验已获得 CCR 科学领导委员会和 CTEP 的批准,该试验已获得 CCR 科学领导委员会和 CTEP 的批准,该试验测试了 KRAS 突变同工型是否代表抗 MEK 疗法作为胰腺癌二线治疗新疗法反应的完整生物标志物的假设,并且是我们实验室工作的直接转化。 5. 胰腺癌中的抗 PI3K/mTOR 分子治疗:LKB1-AMPK 信号传导的遗传变异和激活预测对 NVP-BEZ235 的反应大量胰腺癌细胞系的体细胞突变状态与对 PI3K/mTOR 抑制的药物表型耐药性之间的相关性(NVP-BEZ235 治疗后不诱导细胞凋亡) 显示 a 之间具有统计显着性关联。 ARID1A 或染色质重塑复合物 SNF/SWI 的其他基因中的变异,以及 b.参与 WNT 信号传导的 98 个基因中的 11 个基因 APC、AXIN1、CCND1、CCND3、CTNNB1、CREBBP、EP300、MYC、RAC1、SMAD4、TP53 中任何一个的变异。以及对 PI3K/mTOR 抑制的抵抗。对上述细胞系和用 PI3K/mTOR 抑制剂处理的患者来源的异种移植模型 (PDX) 进行的磷蛋白分析显示,与敏感的 PDX 肿瘤相比,对 PI3K/mTOR 抑制具有抗性的肿瘤中 AMPK 活性增加。由于 AMPK 是细胞能量稳态的主要调节剂,我们比较了耐药细胞系和敏感细胞系的代谢特征,发现对营养物质的代谢依赖之间存在显着差异,包括敏感细胞系中线粒体基础呼吸和最大呼吸和备用能力的增加,以及耐药细胞系中糖酵解速率的增加,包括糖酵解能力和糖酵解储备。目前正在进行 PI3K/mTOR 抑制剂和糖酵解抑制剂在 PI3K/mTOR 耐药细胞中的联合药物反应评估,以测试在糖酵解阻断存在的情况下对 PI3K/mTOR 抑制的敏感性,作为胰腺癌的一种新治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Udo Rudloff其他文献
Udo Rudloff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}














{{item.name}}会员




