Image-based Automated Counting of Plasma Cells and Marrow Cellularity in Core Marrow Biopsies
基于图像的核心骨髓活检中浆细胞和骨髓细胞结构的自动计数
基本信息
- 批准号:9354083
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AffectAlgorithmsAmericanAntibodiesAspirate substanceBiopsyBlast CellBloodBlood CellsBone MarrowBone Marrow ExaminationBone Marrow InvolvementBone TissueBone marrow biopsyCancerousCell CountCellsCellularityCodeColorComputer softwareCore BiopsyCorrelation StudiesDataDiagnosisDiseaseEvaluationGoalsHistologicImageImage AnalysisLaboratoriesLanguageLeukemic CellLymphocyteMalignant NeoplasmsManualsManuscriptsMarrowMeasuresMethodsMicroscopeMicroscopicMultiple MyelomaNeoplasmsPathologistPathologyPerformancePlasma CellsPopulationPreparationProceduresProcessProductionProteinsPublicationsRNAReagentResolutionSamplingStaining methodStainsStromal CellsTechnologyTestingTimeTumor BurdenUpdateValidationbasebonecancer diagnosiscell typecollegediagnosis evaluationdigital imagingexperienceflexibilityhistological stainsimprovedinterestmeetingspostersprogramsresponsetissue preparation
项目摘要
Plasma cells (PC) are normally responsible for manufacturing large amounts of antibodies. When PC become cancerous they accumulate in the bone marrow, where they interfere with the production of normal blood cells and destroy bone. The most aggressive form of PC cancers is called Multiple Myeloma, which constitutes 1% of all cancers. One of the most valuable procedures used in the diagnosis of these cancers and determination of tumor load is a bone marrow examination. This procedure consists of obtaining aspirates and bone biopsies where pathologists examine microscopic preparations and estimate the number of PC present. This number is currently a required criterion for diagnosis of PC cancers and also evaluation of response to therapy. However, current microscopic methods for the enumeration of PC lack precision. The counts in the aspirates are affected by blood contamination and estimations based on bone tissue preparations are somewhat subjective and at best semi-quantitative. Also, the total marrow cellularity, which is valuable in assessing numerous hematologic conditions, is evaluated semi-quantitatively. To facilitate these counts and improve accuracy and precision, we developed digital image-based software to perform a rapid quantitation of PC and marrow cellularity in bone marrow biopsies. The initial evaluation of this software provided excellent results and we are performing additional testing to further validating it. A similar approach used for PC could be extended to the analysis of other cell types such as leukemic cells, lymphocytes, or cells of other lineages.
Although the testing and validations of the current software version demonstrated very good results, there are limitations with the program that preclude its universal use. For example, the software produces acceptable results as long as it is used with images obtained with a single microscope and a single camera. If either of these is changed, the software coding needs to be changed accordingly, a process that is not practical. Also, the application process is rather slow. For these reasons, the software language and algorithm are currently being modified not only to make the program flexible enough to accommodate different resolutions and other imaging conditions (colors, intensities, etc.) but also to make the software application faster and more efficient in order to make it more practical than the existing version.
An updated version of the software has been tested but the advantages of this new version over the original version is only partially incremental. Improving the existing version further will necessitate additional and will be costly. Therefore, a manuscript with the original data as a proof of principle is being finalized and will be submitted for publication shortly.
浆细胞(PC)通常负责制造大量抗体。当PC癌变时,它们会积聚在骨髓中,在那里它们会干扰正常血细胞的产生并破坏骨骼。最具侵袭性的PC癌被称为多发性骨髓瘤,占所有癌症的1%。在诊断这些癌症和确定肿瘤负荷方面,最有价值的程序之一是骨髓检查。这一过程包括抽吸和骨活检,病理学家检查显微准备并估计存在PC的数量。这一数字目前是诊断PC癌和评估治疗反应的必要标准。然而,目前PC的微观计数方法缺乏精确度。抽吸物中的计数受到血液污染的影响,基于骨组织准备的评估有些主观,充其量是半定量的。此外,骨髓细胞总数,这是有价值的评估许多血液疾病,是半定量的评估。为了方便这些计数并提高准确度和精密度,我们开发了基于数字图像的软件来执行骨髓活检中PC和骨髓细胞密度的快速定量。该软件的初步评估提供了出色的结果,我们正在进行额外的测试,以进一步验证它。用于PC的类似方法可以扩展到其他细胞类型的分析,如白血病细胞、淋巴细胞或其他谱系的细胞。
虽然对当前软件版本的测试和验证显示了非常好的结果,但该程序存在一些限制,使其无法普遍使用。例如,只要使用该软件处理用单个显微镜和单个照相机获得的图像,它就能产生可接受的结果。如果其中任何一个被更改,软件编码都需要相应地更改,这一过程是不切实际的。此外,申请过程也相当缓慢。由于这些原因,软件语言和算法目前正在修改,不仅使程序足够灵活,以适应不同的分辨率和其他成像条件(颜色、强度等)。还可以使软件应用更快、更高效,从而使其比现有版本更实用。
软件的更新版已经过测试,但新版本相对于原始版本的优势只是部分增加。进一步改进现有版本将需要增加新的版本,而且成本高昂。因此,一份以原始数据作为原则证明的手稿正在定稿,不久将提交出版。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Raul Braylan其他文献
Raul Braylan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Raul Braylan', 18)}}的其他基金
Collaboration with Investigators from the Multiple Myeloma Section, Medical Oncology Branch, NCI and of the Molecular Medicine Branch, Molecular Genomics & Therapeutics Section, NIDDK
与 NCI 肿瘤内科多发性骨髓瘤科和分子基因组学分子医学科的研究人员合作
- 批准号:
8952879 - 财政年份:
- 资助金额:
-- - 项目类别:
Identification of biomarker(s) of monocyte precursors in human bone marrow
人骨髓中单核细胞前体生物标志物的鉴定
- 批准号:
10264681 - 财政年份:
- 资助金额:
-- - 项目类别:
Rapid and Simple Isolation and Concentration Procedure for Human Megakaryocytes
人巨核细胞快速、简单的分离和浓缩程序
- 批准号:
9557287 - 财政年份:
- 资助金额:
-- - 项目类别:
Rapid and Simple Isolation and Concentration Procedure for Human Megakaryocytes
人巨核细胞快速、简单的分离和浓缩程序
- 批准号:
8952876 - 财政年份:
- 资助金额:
-- - 项目类别:
Rapid and Simple Isolation and Concentration Procedure for Human Megakaryocytes
人巨核细胞快速、简单的分离和浓缩程序
- 批准号:
10690338 - 财政年份:
- 资助金额:
-- - 项目类别:
Use of flow cytometric light scattering to recognize the characteristic vacuolated marrow cells in VEXAS syndrome
使用流式细胞术光散射识别 VEXAS 综合征的特征性空泡骨髓细胞
- 批准号:
10913215 - 财政年份:
- 资助金额:
-- - 项目类别:
Rapid and Simple Isolation and Concentration Procedure for Human Megakaryocytes
人巨核细胞快速、简单的分离和浓缩程序
- 批准号:
10913206 - 财政年份:
- 资助金额:
-- - 项目类别:
Determination of GPI-anchored protein expression in bone marrows of normal individuals and patients with paroxysmal nocturnal hemoglobinuria (PNH)
正常人和阵发性睡眠性血红蛋白尿症 (PNH) 患者骨髓中 GPI 锚定蛋白表达的测定
- 批准号:
10022067 - 财政年份:
- 资助金额:
-- - 项目类别:
Image-based Automated Counting of Plasma Cells and Marrow Cellularity in Core Marrow Biopsies
基于图像的核心骨髓活检中浆细胞和骨髓细胞结构的自动计数
- 批准号:
8952880 - 财政年份:
- 资助金额:
-- - 项目类别:
Rapid and Simple Isolation and Concentration Procedure for Human Megakaryocytes
人巨核细胞快速、简单的分离和浓缩程序
- 批准号:
10020736 - 财政年份:
- 资助金额:
-- - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant