Mechanisms and Epigenetic Effectors of Cellular Reprogramming Factor Activity
细胞重编程因子活性的机制和表观遗传效应器
基本信息
- 批准号:8851409
- 负责人:
- 金额:$ 5.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:BindingBiochemicalBiological AssayBiological ModelsCell TherapyCellsChimera organismChromatinChromatin StructureClinicalComplexCustomDNA BindingDNA-Binding ProteinsDevelopmentDiseaseDissociationDue ProcessEP300 geneEngineeringEnzymesEpigenetic ProcessEthicsExhibitsFibrinogenFibroblastsFluorescenceFluorescence Resonance Energy TransferFluorescence SpectroscopyGKLF proteinGene ExpressionGenerationsGeneticGenetic TranscriptionGenomeGerm LayersGoalsHistonesHumanIn VitroLeadLengthLigationModelingModificationMonitorNucleosomesPathogenesisPatientsPatternPeptide SynthesisPopulationPost-Translational Protein ProcessingProcessPropertyProtein ChemistryProtein EngineeringProteinsProtocols documentationReaderRecruitment ActivityRegenerative MedicineRelative (related person)ResearchResearch ProposalsRoleSiteSomatic CellSyndromeTechniquesTherapeuticVariantbasebiophysical propertiesc-myc Genescell typechromatin modificationclinical applicationdesignembryonic stem cellengineering designfluorophoregain of functiongenome-wide analysisheterochromatin-specific nonhistone chromosomal protein HP-1histone modificationin vitro Assayin vivoinduced pluripotent stem cellinsightparticlepluripotencypublic health relevanceresearch studyscreeningself-renewalstem cell technologytool
项目摘要
DESCRIPTION (provided by applicant): The goal of this research proposal is to utilize synthetically generated chromatin templates to facilitate the biochemical and biophysical characterization of the Oct4, Sox2, Klf4, and c-Myc (OSKM) pluripotency regulators. When ectopically expressed in somatic cells, OSKM act synergistically to reprogram cell fate to pluripotency, resulting in self-renewing induced pluripotent stem cells (iPSCs) that can differentiate into cell types of the three germ layers. iPSCs are an invaluable tool in the fields f regenerative medicine and custom cell therapies because they are functionally indistinguishable from embryonic stem cells (ESCs) and circumvent all ESC-related ethical concerns. Furthermore, iPSCs that are generated from patients with complex genetic syndromes can be differentiated into the afflicted cell type to afford unparalleled insight into the pathogenesis ofa given disease and to provide a model that is compatible with therapeutic screening. Currently, less than 1% of the starting cell population will reach pluripotency in a typical reprogramming experiment, and the process needs to be substantially optimized to fully realize the clinical applications of iPSCs.
OSKM bind to the genome, where they influence epigenetic modifications and control gene expression by recruiting a variety of transcriptional regulators to chromatin. Not surprisingly, OSKM localization patterns in iPSCs and ESCs are highly similar and mislocalization is observed in cells that fail to achieve pluripotency. Interestingly, certain epigenetic marks are able to act as barriers to the reprogramming process by disrupting OSKM activity. Despite the fact that genome-wide studies continue to emphasize the importance of epigenetic signatures in OSKM localization and function, there is a lack of mechanistic information describing the crosstalk between histone modifications and OSKM. I propose to recapitulate reprogramming factor-nucleosome interactions in vitro by combining techniques in peptide synthesis, protein engineering, site-specific protein modification, and fluorescence spectroscopy. These studies will elucidate the effects that histone marks have on OSKM binding and function in the context of mononucleosomes and nucleosome arrays. Additionally, I will engineer multivalent Oct4, Sox2 and Klf4 proteins that target epigenetic barriers, which will be used to generate iPSCs. The specific aims of this research are: 1) characterize the effect of OSKM binding on nucleosome stability and chromatin structure in vitro, 2.) determine the role of key epigenetic modifications in OSKM binding and function, and 3.) design chimeric factors that can overcome epigenetic barriers to reprogramming. This proposed research is designed to delineate valuable mechanistic information underlying OSKM binding and function, which is crucial for the development of reprogramming strategies that can overcome epigenetic barriers and generate high quality iPSCs on a more consistent basis.
描述(由申请人提供):本研究计划的目标是利用合成生成的染色质模板来促进Oct4, Sox2, Klf4和c-Myc (OSKM)多能性调节因子的生化和生物物理表征。当在体细胞中异位表达时,OSKM协同作用将细胞命运重编程为多能性,从而产生自我更新的诱导多能干细胞(iPSCs),可以分化为三种胚层的细胞类型。iPSCs是再生医学和定制细胞治疗领域的宝贵工具,因为它们在功能上与胚胎干细胞(ESCs)无法区分,并且规避了所有与胚胎干细胞相关的伦理问题。此外,由复杂遗传综合征患者产生的iPSCs可以分化为受影响的细胞类型,从而对特定疾病的发病机制提供无与伦比的见解,并提供与治疗筛选相容的模型。目前,在典型的重编程实验中,只有不到1%的起始细胞群能达到多能性,为了充分实现iPSCs的临床应用,这一过程需要进行大量优化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Glen Liszczak其他文献
Glen Liszczak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Glen Liszczak', 18)}}的其他基金
Regulation and function of site-specific protein poly-ADP-ribosylation
位点特异性蛋白质聚 ADP 核糖基化的调控和功能
- 批准号:
10668492 - 财政年份:2022
- 资助金额:
$ 5.24万 - 项目类别:
Mechanisms and Epigenetic Effectors of Cellular Reprogramming Factor Activity
细胞重编程因子活性的机制和表观遗传效应器
- 批准号:
8714612 - 财政年份:2014
- 资助金额:
$ 5.24万 - 项目类别:
相似海外基金
CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
- 批准号:
2339759 - 财政年份:2024
- 资助金额:
$ 5.24万 - 项目类别:
Continuing Grant
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
- 批准号:
479334 - 财政年份:2023
- 资助金额:
$ 5.24万 - 项目类别:
Operating Grants
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
- 批准号:
23H02481 - 财政年份:2023
- 资助金额:
$ 5.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
- 批准号:
2320160 - 财政年份:2023
- 资助金额:
$ 5.24万 - 项目类别:
Standard Grant
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
- 批准号:
10637251 - 财政年份:2023
- 资助金额:
$ 5.24万 - 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
- 批准号:
10604822 - 财政年份:2023
- 资助金额:
$ 5.24万 - 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
- 批准号:
10716621 - 财政年份:2023
- 资助金额:
$ 5.24万 - 项目类别:
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
- 批准号:
10655891 - 财政年份:2023
- 资助金额:
$ 5.24万 - 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
- 批准号:
10621634 - 财政年份:2023
- 资助金额:
$ 5.24万 - 项目类别:
EAGER: Elastic Electronics for Sensing Gut Luminal and Serosal Biochemical Release
EAGER:用于感测肠腔和浆膜生化释放的弹性电子器件
- 批准号:
2334134 - 财政年份:2023
- 资助金额:
$ 5.24万 - 项目类别:
Standard Grant