Scalar Closed-Loop STN/GPi DBS Based on Evoked and Spontaneous Potentials
基于诱发电位和自发电位的标量闭环 STN/GPi DBS
基本信息
- 批准号:9404120
- 负责人:
- 金额:$ 47.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsBasal GangliaBilateralBiological MarkersBradykinesiaBrainChronicClinicalClinical MarkersClinical ResearchComplexDeep Brain StimulationDevelopmentDevicesDisease ProgressionDopamineDyskinetic syndromeEarly InterventionElectrodesEligibility DeterminationEvaluationEvoked PotentialsEvolutionFDA approvedFeedbackHumanImplantLeadLocationManualsMedical DeviceMorphologic artifactsMotorNatureOnset of illnessOperative Surgical ProceduresOutcomeParkinson DiseasePatientsPatternPersonsPharmaceutical PreparationsPhysiologicalPostoperative PeriodPublic HealthResearchSignal TransductionSiteSurrogate MarkersSymptomsSynapsesSystemTechnologyTestingThalamic structureTimeTremorbaseclinical efficacyexperienceexperimental studyimprovedmotor symptomnovelnovel strategiesprogramsreduce symptomsrelating to nervous systemresponsesynergismsystems researchtreatment effect
项目摘要
Abstract
DBS therapy for Parkinson's disease is now the primary surgical approach for Parkinson's disease, recently
FDA approved at 4 years after onset of disease. However, this therapy is still limited to treatment of a subset
of motor symptoms (ie, tremor, rigidity, bradykinesia and dyskinesias) and requires considerable postoperative
clinical adjustment to program and maintain function. A number of improvements to DBS for PD are being
tested, including changes in patterns of stimulation and specific targets. However, a major new approach
involves internal parameter adjustment using a surrogate physiological marker of clinical symptoms, useful for
confirming initial electrode placement, programming, and also long-term optimization of parameters. Several
research systems have been suggested and are in testing for development of closed loop systems, including
systems based on recording beta-band oscillations. Closed loop control involving recording a surrogate signal
relevant to PD could improve DBS therapy on several time scales, including short-term dynamics (ie, over
minutes), initial programming (over weeks to months), and long-term, depending on the time course of
response to STN DBS. In addition to spontaneous beta band recording we have also implemented direct
evoked potential recording using the stimulating DBS electrode, requiring suppression of the DBS-induced
artifact. These intraoperative DBS recordings during STN DBS implants have revealed a complex evoked
potential likely reflecting GPe/GPi activation, which may provide an excellent surrogate marker. This complex
evoked potential changes over a short-term time period as the treatment effect of STN DBS comes on,
indicating that the evoked potential likely reflects DBS effects on a larger motor circuit as the circuit
dynamically is altered to an improved state. We hypothesize that this surrogate marker (in addition to beta
band oscillations) may provide a key feedback signal for scalar, graded (proportional) closed loop DBS control,
highly relevant to DBS effects on PD circuitry. To test this hypothesis we will perform long-term recording of
this signal from humans (in either STN or GPe/GPi) together with DBS stimulation (in STN and/or GPi), using a
novel DBS recording/stimulation device (Medtronics RC+S).
These clinical experiments will focus on a small, pilot clinical study (n = 6 patients) to implant bilateral STN +
GPe/GPi DBS electrodes in Parkinson's patients eligible for DBS using conventional stereotactic localization,
connecting to Medtronics RC+S IPGs. Patients will benefit from either ordinary STN or GPi DBS stimulation
and then we will also test the possibility of synergism between the two electrodes for clinical efficacy.
Additionally, we will analyze the motor efficacy of both an external (using recording and modifying the
parameters manually) and internal (using an algorithm for providing parameters automatically) scalar, closed
loop response to these recorded surrogate markers. We will take advantage of the graded nature of the
spontaneous and evoked responses to construct a proportional control feedback system, and to specifically
delineate the time constants of the closed loop system to be able to define optimally damped control of PD
symptoms. These experiments will provide a number of novel outcomes, including a direct, within-person
comparison of STN and GPe/GPi DBS efficacy, development of an optimal surrogate parameter for detecting
DBS efficacy using spontaneous and evoked physiological responses in direct comparison to clinical
symptoms, and defining an optimal, scalar feedback, proportional control system for treatment on various time
scales.
摘要
最近,DBS治疗帕金森氏症是帕金森氏症的主要外科治疗方法
FDA在发病4年后批准。然而,这种疗法仍然局限于对子集的治疗。
运动症状(即震颤、僵直、运动迟缓和运动障碍),需要相当长的术后时间
临床调整以规划和维持功能。针对PD的DBS正在进行多项改进
测试,包括刺激模式和特定目标的变化。然而,一个重要的新方法
使用临床症状的替代生理标记物进行内部参数调整,对于
确定初始电极放置、编程以及参数的长期优化。几个
已经提出了研究系统,并正在测试闭环系统的开发,包括
基于记录贝塔频段振荡的系统。涉及记录替代信号的闭环控制
与帕金森病相关的可以在几个时间尺度上改进DBS治疗,包括短期动态(即
几分钟)、初始规划(几周到几个月)和长期规划,具体取决于
对STN DBS的回应。除了自发的Beta乐队录音外,我们还实现了直接
使用刺激DBS电极记录诱发电位,需要抑制DBS诱导的诱发电位
神器。在STN DBS植入期间的这些术中DBS记录显示,复杂的诱发
潜在的可能反映GPE/GPI激活,这可能是一个很好的替代标记。这个建筑群
随着STN DBS治疗效果的显现,诱发电位在短期内发生变化,
这表明诱发电位可能反映了DBS对较大马达电路的影响
动态地改变为改进的状态。我们假设这个代理标记(除了测试版之外
频带振荡)可以提供用于标量、分级(比例)闭环DBS控制的关键反馈信号,
与局部放电电路上的DBS效应高度相关。为了验证这一假设,我们将对
这种来自人类的信号(STN或GPE/GPI)与DBS刺激(STN和/或GPI)一起,使用
新型DBS记录/刺激装置(美敦力RC+S)。
这些临床实验将集中在一项小型的先导性临床研究(n=6名患者),植入双侧STN+。
采用常规立体定向定位的帕金森病患者的GPE/GPI DBS电极
连接到美敦力RC+S IPGS。患者将从普通的STN或GPI DBS刺激中受益
然后我们还将测试两个电极之间协同作用的可能性,以达到临床疗效。
此外,我们还将分析外部(使用录音和修改
参数手动)和内部(使用自动提供参数的算法)标量、关闭
对这些记录的代理标记的循环响应。我们将利用
自发和诱发的反应,以构建比例控制反馈系统,并具体
描绘闭环系统的时间常数,以便能够定义PD的最优阻尼控制
症状。这些实验将提供许多新的结果,包括直接的、面对面的
STN与GPE/GPI DBS检测效果比较及最佳替代检测参数的建立
使用自发和诱发生理反应的DBS疗效与临床的直接比较
症状,并定义一个最佳的,标量反馈,比例控制系统,用于不同时间的治疗
比例。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DENNIS Alan TURNER其他文献
DENNIS Alan TURNER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DENNIS Alan TURNER', 18)}}的其他基金
Hypoperfusion, Hemodynamic Control Domains and Neurovascular Dysregulation in AD brain pathology
AD 脑病理学中的低灌注、血流动力学控制域和神经血管失调
- 批准号:
10654258 - 财政年份:2023
- 资助金额:
$ 47.75万 - 项目类别:
An Integrated Biomarker Approach to Personalized, Adaptive Deep Brain Stimulation in Parkinson Disease
帕金森病个性化、适应性深部脑刺激的综合生物标志物方法
- 批准号:
10571952 - 财政年份:2023
- 资助金额:
$ 47.75万 - 项目类别:
Central and Peripheral Neuromodulation during Activity to Synergistically Augment Stroke Recovery
活动期间的中枢和外周神经调节可协同增强中风恢复
- 批准号:
10775774 - 财政年份:2022
- 资助金额:
$ 47.75万 - 项目类别:
Extracranial Brain Stimulation Reduces Metabolic Insufficiency Through Enhanced Cerebral Blood Flow in CVN-AD Alzheimer's Model
颅外脑刺激通过增强 CVN-AD 阿尔茨海默病模型中的脑血流量来减少代谢不足
- 批准号:
10338855 - 财政年份:2022
- 资助金额:
$ 47.75万 - 项目类别:
Extracranial Brain Stimulation Reduces Metabolic Insufficiency Through Enhanced Cerebral Blood Flow in CVN-AD Alzheimer's Model
颅外脑刺激通过增强 CVN-AD 阿尔茨海默病模型中的脑血流量来减少代谢不足
- 批准号:
10554248 - 财政年份:2022
- 资助金额:
$ 47.75万 - 项目类别:
Central and Peripheral Neuromodulation during Activity to Synergistically Augment Stroke Recovery
活动期间的中枢和外周神经调节可协同增强中风恢复
- 批准号:
10588544 - 财政年份:2022
- 资助金额:
$ 47.75万 - 项目类别:
Scalar Closed-Loop STN/GPi DBS Based on Evoked and Spontaneous Potentials
基于诱发电位和自发电位的标量闭环 STN/GPi DBS
- 批准号:
9564229 - 财政年份:2017
- 资助金额:
$ 47.75万 - 项目类别:
Scalar Closed-Loop STN/GPi DBS Based on Evoked and Spontaneous Potentials
基于诱发电位和自发电位的标量闭环 STN/GPi DBS
- 批准号:
10219364 - 财政年份:2017
- 资助金额:
$ 47.75万 - 项目类别:
Fornix Stimulation Enhances Neurovascular Plasticity in Alzheimer's Mouse Model
穹窿刺激增强阿尔茨海默病小鼠模型的神经血管可塑性
- 批准号:
9269882 - 财政年份:2016
- 资助金额:
$ 47.75万 - 项目类别:
Neuronal Fatigue in Aging Hippocampus during Sustained Metabolic Demand
持续代谢需求期间老化海马的神经元疲劳
- 批准号:
8097946 - 财政年份:2010
- 资助金额:
$ 47.75万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 47.75万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 47.75万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 47.75万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 47.75万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 47.75万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 47.75万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 47.75万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 47.75万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 47.75万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 47.75万 - 项目类别:
Research Grant














{{item.name}}会员




