Innovative Tools for Three Dimensional Traction Force Microscopy of Single Cells
单细胞三维牵引力显微镜的创新工具
基本信息
- 批准号:9465846
- 负责人:
- 金额:$ 14.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-21 至 2019-03-20
- 项目状态:已结题
- 来源:
- 关键词:AccountingAlgorithmsAlpha CellAtherosclerosisAtomic Force MicroscopyBehaviorBenchmarkingBiochemicalBiologicalBiologyBiomechanicsBreast Cancer CellCell ShapeCell physiologyCellsChronicCodeCommunitiesComputer SystemsComputer softwareComputer-Aided DesignCustomData SetDevelopmentDimensionsDisease ProgressionElementsEmbryonic DevelopmentEventExtracellular MatrixFibroblastsGelGenerationsHeterogeneityHumanIndividualLeadLinkMalignant NeoplasmsMeasurableMeasuresMechanicsMethodsMicrospheresModelingPathway interactionsPerformancePhysicsPhysiologicalPlayPopulationProcessPropertyResearchResolutionRoleSignal TransductionSoftware DesignSpatial DistributionSpecific qualifier valueTechniquesTissuesTractionVariantbiological systemscancer cellcell motilitycell typecomputer programdesignimprovedinnovationinsightnovelnovel therapeutic interventionoptical imagingresponsesoftware developmentstem cell differentiationtool
项目摘要
Project Summary
Tractions exerted by individual cells on their surroundings play a critical role in mechanical events in biology
such as tissue contraction, folding, cell shape changes, or cell movements, and in many basic cellular
functions such as biochemical signaling, proliferation, and differentiation. These processes are in turn
implicated in the progression of diseases like cancer, atherosclerosis, and other chronic fibrotic conditions.
Recently, this remarkable link has been utilized to develop exciting new therapeutic interventions that rely on
disrupting mechano-signaling machinery within the cell, and the pathways that lead to the remodeling of the
extra-cellular matrix (ECM).
Techniques that can precisely quantify the spatial variation and heterogeneity of cellular traction within and
between cells have found important applications in understanding and controlling these processes. Of these,
three-dimensional traction force microscopy (3D TFM) has emerged as a particularly valuable tool since it is
applied to cells embedded in a three-dimensional ECM, the natural state for most cells. Current 3D TFM
approaches are challenged by the critical steps of using optical images to generate a 3D geometrical model of
the matrix surrounding the cell, and inferring cellular tractions from displacement estimates of micro-beads
embedded in the matrix. Approximations incurred in these steps lead to significant errors in computed tractions
that in turn lead to erroneous biological conclusions. Thus there is critical need to develop more accurate and
high resolution 3D TFM techniques.
The long-term objective of the proposed research is to improve and automate the 3D TFM process so that it
can be effectively used to answer mechanobiological questions and design new therapeutic interventions. This
will be accomplished by (a) applying advanced segmentation and mesh generation techniques to optical
images to generate 3D geometric models and finite element meshes of the matrix surrounding a cell, and (b)
by developing and implementing new algorithms to determine the spatial distribution of cellular tractions from
measured micro-beads displacements, while accounting the nonlinear elastic response of the matrix. These
developments will be validated through benchmark studies, and their utility will be demonstrated by quantifying
the traction exerted by cancer cells embedded in a synthetic extracellular matrix.
项目摘要
在生物学中,单个细胞对周围环境施加的牵引力在机械事件中起着关键作用
例如组织收缩、折叠、细胞形状改变或细胞运动,并且在许多基本细胞中,
生物化学信号传导、增殖和分化等功能。这些过程反过来
与癌症、动脉粥样硬化和其他慢性纤维化病症等疾病的进展有关。
最近,这种显著的联系已被用于开发令人兴奋的新的治疗干预措施,
扰乱细胞内的机械信号机制以及导致细胞重塑的途径
细胞外基质(ECM)。
技术,可以精确地量化空间变化和异质性的细胞牵引内,
在理解和控制这些过程中发现了重要的应用。其中,
三维牵引力显微镜(3D TFM)已经成为一种特别有价值的工具,因为它
应用于嵌入三维ECM中的细胞,这是大多数细胞的自然状态。当前3D TFM
这些方法受到使用光学图像来生成三维几何模型的关键步骤的挑战。
细胞周围的基质,并从微珠的位移估计推断细胞牵引力
嵌入在矩阵中。在这些步骤中产生的近似导致计算牵引力的显著误差
从而导致错误的生物学结论。因此,迫切需要开发更准确和
高分辨率三维TFM技术。
拟议研究的长期目标是改进和自动化3D TFM过程,
可以有效地用于回答机械生物学问题和设计新的治疗干预措施。这
将通过(a)将先进的分割和网格生成技术应用于光学
图像,以生成围绕细胞的基质的3D几何模型和有限元网格,以及(B)
通过开发和实施新的算法来确定细胞牵引力的空间分布,
测量微珠位移,同时考虑基体的非线性弹性响应。这些
开发将通过基准研究进行验证,其效用将通过量化
嵌入合成细胞外基质的癌细胞所施加的牵引力。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Three-Dimensional Traction Microscopy with a Fiber-Based Constitutive Model.
具有基于纤维的本构模型的三维牵引显微镜。
- DOI:10.1016/j.cma.2019.112579
- 发表时间:2019
- 期刊:
- 影响因子:7.2
- 作者:Song,Dawei;Hugenberg,Nicholas;Oberai,AssadA
- 通讯作者:Oberai,AssadA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ottmar Klaas其他文献
Ottmar Klaas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 14.94万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 14.94万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 14.94万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 14.94万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 14.94万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 14.94万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 14.94万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 14.94万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 14.94万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 14.94万 - 项目类别:
Continuing Grant














{{item.name}}会员




