Automated in vivo analysis of tumor growth rate as a guide for therapeutic decisions to advance personalized cancer treatment
肿瘤生长速率的自动体内分析作为治疗决策的指南,以推进个性化癌症治疗
基本信息
- 批准号:9231706
- 负责人:
- 金额:$ 60.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsBRAF geneBackBiometryCancer CenterCancer PatientClinicalClinical TrialsCollaborationsComputer softwareDataDecision MakingDevelopmentEngineeringEnsureEpidermal Growth Factor ReceptorEpidermal Growth Factor Receptor Tyrosine Kinase InhibitorEvaluationFDA approvedFeedbackFoundationsGoalsGrowthGuidelinesImageImmune checkpoint inhibitorIndustrializationJudgmentKineticsLeftMalignant NeoplasmsMalignant neoplasm of lungMeasurementMeasuresMedicalMethodsModelingMutationNon-Small-Cell Lung CarcinomaOncologistOutcomePatientsPhysiciansPrecision therapeuticsProductivityPublishingRadiology SpecialtyReaderReference ValuesReportingReproducibilityResearchResearch PersonnelRoleScientistSystemTechnical ExpertiseTestingTherapeuticTimeTranslatingTranslationsTumor BurdenTumor VolumeTyrosine Kinase InhibitorWomanWorkX-Ray Computed Tomographyanalytical toolbasecancer therapyclinical applicationclinical investigationclinical practiceclinically significantcohortimage processingimprovedin vivoindustry partnerinhibitor/antagonistlogarithmmutantnoveloncologypersonalized cancer therapypersonalized medicineprognostic valueprospectiveradiologistresearch clinical testingresponsestatisticstargeted agenttargeted therapy trialstargeted treatmenttime usetooltreatment durationtumortumor growthuser-friendly
项目摘要
Project Summary
The goal of this project is to develop a novel analytic software module for tumor growth rate assessment during
therapy in advanced lung cancer patients. Tumor growth rate is a novel concept for evaluation of clinical
benefit of cancer therapy and is proposed as objective guides for treatment decisions, however is not included
in the current standards of tumor response evaluation. The concept of tumor growth rate is especially important
in patients with specific mutations in their tumors, such as epidermal growth factor receptor (EGFR) mutations
in lung cancer, treated with personalized therapy specifically targeting their mutations. EGFR-mutant patients
show initial dramatic response to targeted therapy using EGFR inhibitors; however, their tumors grow back and
eventually progress. Current clinical practice lacks objective guidelines about when EGFR inhibitor therapy can
be safely continued while tumors are growing back, and the decision is left to treating physicians’ discretions.
Similar clinical scenarios are observed during therapy using other targeting agents for various cancers,
indicating an increasing clinical demand to fulfil this unmet need for objective guides for treatment decisions in
the era of precision cancer therapy. Investigators of this academic-industrial partnership team have developed
a method to objectively characterize of tumor growth rate over time using the serial clinical CT imaging data
obtained in patients receiving cancer therapy. The method was applied to EGFR-mutant lung cancer patients
as a well-studied paradigm, and provided a reproducible reference value that indicates fast versus slow growth.
Given the demonstrated feasibility as a clinical investigation, the team proposes to deliver this novel analytic
functionality to the clinical setting, by developing an automated analytic tool for tumor growth rate assessment
and interpretation, which is essential to make the approach more widely adaptable within the clinical workflow.
The academic-industrial team consists of accomplished investigators from Dana-Farber/Brigham and Women’s
Cancer Center and industrial scientists from Toshiba Medical Systems Corporation, with expertise in oncology,
radiology, biostatistics, and engineering, who have a track record of productive collaboration. The team has
started to work together to address the following aims: Aim 1) Develop an analytic software module for tumor
growth rate in lung cancer during therapy, which operates on an existing workstation; Aim 2) Optimize the
module based on the reproducibility assessment and user feedback in a pilot cohort of 30 EGFR-mutant
patients; and Aim 3) Apply the analytic software module for tumor growth rate in lung cancer patients treated in
prospective trials. Delivery of the novel analytic module for tumor growth rate to the clinical setting will provide
objective guides for treatment decision making during cancer therapy, and help to maximize the benefit of
precision therapy for cancer. The demonstrated productivity of academic-industrial partnership with
bidirectional research relationship further ensures successful completion of the project goal.
项目摘要
该项目的目标是开发一种新的分析软件模块,用于在肿瘤生长过程中评估肿瘤生长速率。
晚期肺癌患者的治疗。肿瘤生长率是一个新的概念,用于评价临床
癌症治疗的好处,并提出作为治疗决策的客观指南,但不包括在内
在目前的肿瘤反应评估标准中。肿瘤生长速度的概念尤为重要
在肿瘤中有特定突变的患者中,如表皮生长因子受体(EGFR)突变
在肺癌中,采用专门针对其突变的个性化治疗。EGFR突变患者
对使用EGFR抑制剂的靶向治疗显示出最初的显著反应;然而,他们的肿瘤会重新生长,
最终取得进展。目前的临床实践缺乏关于EGFR抑制剂治疗何时可以
在肿瘤重新生长期间,安全地继续使用,并由治疗医生自行决定。
在使用其他靶向剂治疗各种癌症期间观察到类似的临床情况,
这表明临床需求不断增加,以满足对治疗决策客观指南的未满足需求,
精准癌症治疗的时代这个学术-工业合作团队的研究人员开发了
一种使用系列临床CT成像数据客观表征肿瘤生长速率随时间变化的方法
在接受癌症治疗的患者中获得。该方法应用于EGFR突变型肺癌患者
作为一个良好的研究范例,并提供了一个可重复的参考值,表明快速与缓慢的增长。
考虑到作为临床研究的可行性,该团队建议提供这种新的分析方法。
通过开发用于肿瘤生长速率评估的自动化分析工具,
和解释,这是必不可少的,使该方法更广泛地适应临床工作流程。
学术-工业团队由来自Dana-Farber/Brigham和Women's的资深调查员组成。
癌症中心和东芝医疗系统公司的工业科学家,具有肿瘤学方面的专业知识,
放射学,生物统计学和工程学,他们有着富有成效的合作记录。该团队已经
开始合作,以解决以下目标:目标1)开发肿瘤分析软件模块
在现有工作站上运行的治疗期间肺癌的生长率;目标2)优化
基于30个EGFR突变体的试点队列中的再现性评估和用户反馈的模块
目的3)应用分析软件模块对接受治疗的肺癌患者的肿瘤生长率进行分析,
前瞻性试验。将新型肿瘤生长率分析模块交付到临床环境将提供
在癌症治疗过程中为治疗决策提供客观指导,并有助于最大限度地提高
精准治疗癌症学术界与工业界的伙伴关系所展示的生产力,
双向的研究关系进一步保证了项目目标的顺利完成。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mizuki Nishino其他文献
Mizuki Nishino的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mizuki Nishino', 18)}}的其他基金
Automated in vivo analysis of tumor growth rate as a guide for therapeutic decisions to advance personalized cancer treatment
肿瘤生长速率的自动体内分析作为治疗决策的指南,以推进个性化癌症治疗
- 批准号:
10064076 - 财政年份:2017
- 资助金额:
$ 60.66万 - 项目类别:
CT Volume Measurement of Lung Cancer treated with Erlotinib: Genomic Correlation
厄洛替尼治疗肺癌的 CT 体积测量:基因组相关性
- 批准号:
8239726 - 财政年份:2011
- 资助金额:
$ 60.66万 - 项目类别:
CT Volume Measurement of Lung Cancer treated with Erlotinib: Genomic Correlation
厄洛替尼治疗肺癌的 CT 体积测量:基因组相关性
- 批准号:
8334651 - 财政年份:2011
- 资助金额:
$ 60.66万 - 项目类别:
CT Volume Measurement of Lung Cancer treated with Erlotinib: Genomic Correlation
厄洛替尼治疗肺癌的 CT 体积测量:基因组相关性
- 批准号:
8528386 - 财政年份:2011
- 资助金额:
$ 60.66万 - 项目类别:
CT Volume Measurement of Lung Cancer treated with Erlotinib: Genomic Correlation
厄洛替尼治疗肺癌的 CT 体积测量:基因组相关性
- 批准号:
8721724 - 财政年份:2011
- 资助金额:
$ 60.66万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 60.66万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 60.66万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 60.66万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 60.66万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 60.66万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 60.66万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 60.66万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 60.66万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 60.66万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 60.66万 - 项目类别:
Research Grant