A Precision Navigation System for People with a Visual Impairment

专为视力障碍人士设计的精准导航系统

基本信息

  • 批准号:
    9334871
  • 负责人:
  • 金额:
    $ 27.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2018-11-15
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): The purpose of this proposal is to develop a precision navigation system for people with visual impairment. There is a technological gap between what can now be provided and what is needed. What is needed is "cane-touch" precision. The person needs to be guided close enough to specific locations to find it with a cane. Existing navigation systems employing the Global Positioning System (GPS) can only provide the name of the intersection being approached. The proposed research design is constructed around the hypothesis that the goal of precision guidance can be achieved by merging two types of navigation systems: (1) GPS and (2) Inertial Navigation. Inertial navigation uses sensors now contained in smart phones to track a person's location as s/he is walking toward a destination. Given the location of a destination, it can precisely guide the user there. But it is a short-range solution that loses precision past distances of 50 to 100 meters. GPS often has an "offset bias" error. In a particular locale it may be off by 10 meters to the north of the actual location. This offset bias may be stable for several blocks, and then shift over a fairly short walking distance. The working hypothesis is that cane-touch precision can be achieved by fusing inertial navigation data with GPS data using a data fusion algorithm. Such an algorithm uses statistical methods to merge from two sources to provide more accurate and reliable information than can be obtained from data source separately. There is also an information gap. Research has shown that current inertial navigation systems do not work well for persons with a visual impairment. The reason is that people walking with a cane have an atypical walking style that makes it difficult to track their footsteps. People with a visual impairment tend to walk in a tentative fashion, making sure there is solid ground beneath their foot before placing it down. Various types of body motion characteristic of this population have been shown to be indicative of a footstep. To this end, a motion analysis study for persons with visual impairment is proposed. The hypothesis is that data from this study will provide what is needed to track the movement of their feet, and thus the person's movement. Also needed is map information providing the exact location of accessible walking paths and crosswalks, etc. We will develop a crowd-source paradigm to populate a public database with such map data. The resultant navigation app will be implemented as an application (app) for a smart phone and evaluated by subjects who are visually impaired. The expected outcome is an app for smart phones that provides precision (cane-touch) navigational guidance to persons with visual impairment. This will be invaluable, providing them the ability to independently and safely navigate outdoor environments and find important environmental elements such as pedestrian push buttons, which are never in a standard location. It will also enhance the gait literature for this population.
 描述(由申请人提供):本提案的目的是为视力障碍人士开发精准导航系统。 现在可以提供的与需要的之间存在技术差距。 我们需要的是“手杖般”的精确度。 需要引导该人足够靠近特定位置,以便用拐杖找到它。 现有的采用全球定位系统(GPS)的导航系统只能提供正在接近的交叉路口的名称。 所提出的研究设计是围绕以下假设构建的:精确制导的目标可以通过合并两种类型的导航系统来实现:(1) GPS 和 (2) 惯性导航。 惯性导航使用智能手机中现在包含的传感器来跟踪一个人在走向目的地时的位置。 给定目的地位置,它可以精确引导用户 那里。 但它是一种短距离解决方案,超过 50 到 100 米的距离就会失去精度。 GPS 经常存在“偏移偏差”误差。 在特定地点,它可能会偏离实际位置以北 10 米。 这种偏移偏差可能在几个街区内保持稳定,然后在相当短的步行距离内发生变化。 工作假设是,通过使用数据融合算法将惯性导航数据与 GPS 数据融合,可以实现手杖触摸精度。 这种算法使用统计方法从两个源合并,以提供比单独从数据源获得的信息更准确和可靠的信息。 还存在信息差距。 研究表明,当前的惯性导航系统对于视力障碍人士来说效果不佳。 原因是拄着拐杖的人行走方式不典型,很难追踪他们的脚步。 有视力障碍的人往往会以试探性的方式行走,在放下之前确保脚下有坚实的地面。 该人群的各种身体运动特征已被证明可以指示脚步声。 为此,提出了针对视力障碍者的运动分析研究。 假设这项研究的数据将提供跟踪脚部运动以及人的运动所需的信息。 还需要提供可到达的步行道和人行横道等的确切位置的地图信息。我们将开发一种众包范例,用此类地图数据填充公共数据库。 由此产生的导航应用程序将作为智能手机的应用程序(app)实现,并由视力受损的受试者进行评估。 预期成果是一款智能手机应用程序,可为视力障碍人士提供精确(手杖触摸)导航指导。 这将是非常宝贵的,使他们能够独立、安全地在户外环境中导航,并找到重要的环境元素,例如行人按钮,这些元素永远不会位于标准位置。 它还将增强步态文献 这个人口。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David A. Ross其他文献

Learning stick-figure models using nonparametric Bayesian priors over trees
使用树上的非参数贝叶斯先验学习简笔画模型
Hieroglyphs and Head Injuries: Sex Differences in Traumatic Brain Injury
象形文字和头部受伤:创伤性脑损伤的性别差异
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Megan E. Huibregtse;Joseph J. Cooper;David A. Ross
  • 通讯作者:
    David A. Ross
Barriers in Ophthalmology Residency Applications for Students Identifying as Underrepresented in Medicine: An SF Match Analysis.
医学领域代表性不足的学生在眼科住院医师申请中的障碍:SF 匹配分析。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Johsias A. Maru;Jiangxia Wang;O'Rese J. Knight;B. Tsou;Julius T. Oatts;David A. Ross;Edward Z. Moore;A. Zhang;S. Ramanathan;F. Woreta
  • 通讯作者:
    F. Woreta
Integrating Neuroscience in the Training of Psychiatrists: A Patient-Centered Didactic Curriculum Based on Adult Learning Principles
将神经科学融入精神科医生的培训:基于成人学习原则的以患者为中心的教学课程
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    David A. Ross;R. Rohrbaugh
  • 通讯作者:
    R. Rohrbaugh
Oceanographic expedition in the Black Sea
  • DOI:
    10.1007/bf01173108
  • 发表时间:
    1970-07-01
  • 期刊:
  • 影响因子:
    2.100
  • 作者:
    Egon T. Degens;David A. Ross
  • 通讯作者:
    David A. Ross

David A. Ross的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David A. Ross', 18)}}的其他基金

A Precision Navigation System for People with a Visual Impairment
专为视力障碍人士设计的精准导航系统
  • 批准号:
    9126559
  • 财政年份:
    2015
  • 资助金额:
    $ 27.9万
  • 项目类别:
A Precision Navigation System for People with a Visual Impairment
专为视力障碍人士设计的精准导航系统
  • 批准号:
    8886790
  • 财政年份:
    2015
  • 资助金额:
    $ 27.9万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27.9万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 27.9万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 27.9万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 27.9万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 27.9万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 27.9万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 27.9万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 27.9万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 27.9万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 27.9万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了