Gene and Protein Annotation in Highly-Identical Segmental Duplications
高度相同的片段重复中的基因和蛋白质注释
基本信息
- 批准号:9257145
- 负责人:
- 金额:$ 3.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-12-16 至 2020-12-15
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAllelesAutistic DisorderBiological SciencesCodeComplementary DNACustomDataDatabasesDetectionDevelopmentDiseaseEpilepsyEvolutionFutureGene DuplicationGene ProteinsGene TargetingGenesGeneticGenetic TranscriptionGenomeGenomicsGenotype-Tissue Expression ProjectGoalsHaploidyHumanHuman GenomeHybridsHydatidiform MoleKnowledgeLengthLightMass Spectrum AnalysisMeasuresMediatingMessenger RNAModelingNatureNucleotidesOligonucleotide ProbesOpen Reading FramesPathogenicityPeptidesPlayProtein IsoformsProteinsProteomicsRNA SplicingRestRoleSourceSpecificityStructureSyndromeTechnologyTissuesTranscriptTranslatingTranslationsVariantWorkautism spectrum disorderbasedata acquisitiondiagnostic biomarkerduplicate genesgenome sequencinginnovationmagnetic beadsnovel strategiesparalogous genepractical applicationprotein functionsingle moleculetraittranscriptome sequencing
项目摘要
Project Summary/Abstract:
Genes in highly identical segmental duplications (SDs) play critical roles in human evolution and disease. SDs
themselves mediate pathogenic duplications, deletions, and other rearrangements whose effects range from
neurodevelopmental conditions like autism to syndromic congenital diseases. The genes contained within
SDs, once duplicated, are fertile ground for adaptive tinkering, and may provide innovations that underlie the
evolution of human-specific traits.
However, the duplicate nature of these genes has always presented extra challenges to their study. They are
found in regions of the genome that are some of the most difficult to sequence and assemble; they suffer
from incomplete and inaccurate annotation due to the difficulty of correctly assigning and assembling
sequenced fragments of transcripts; and related to this, for many duplicated genes it is not known if they are
functional—i.e., if they encode a translated and functioning protein.
This project seeks to annotate segmentally duplicated genes at the level of transcription and translation and
proposes a strategy to address these challenges. We will leverage a haploid genome to better discriminate
between highly identical copies of genome sequence, we will combine single-molecule long-read sequencing
technology with a custom cDNA enrichment strategy to accurately determine transcription of SD genes, and
we will take advantage of new developments in mass spectrometry technology to identify paralog-specific
peptides and determine which of these genes are translated.
The goal of this study is identify functional, protein-coding genes among segmentally duplicated regions of
the human genome. The generalizable approach developed in this study can be applied to duplicated space
in other genomes as well. These genes will serve as candidates for future studies of human evolution and
disease. If successful, this study will shed enormous light onto one of the oldest and most challenging
problems in the study of the human genome.
项目概要/摘要:
高度相同的片段重复(SD)基因在人类进化和疾病中起着关键作用。SDS
它们本身介导致病性复制、缺失和其他重排,其影响范围从
从自闭症到先天性综合症其中所含的基因
SDs一旦被复制,就成为适应性修补的肥沃土壤,并可能提供创新,
人类特定特征的进化。
然而,这些基因的重复性质总是给他们的研究带来额外的挑战。他们是
在基因组中最难测序和组装的区域发现,
由于难以正确分配和组装,
转录物的测序片段;与此相关,对于许多重复的基因,不知道它们是否是
功能性的-即,如果它们编码一个翻译的和功能性的蛋白质。
该项目旨在在转录和翻译水平上注释片段重复的基因,
提出了应对这些挑战的战略。我们将利用单倍体基因组来更好地区分
我们将联合收割机结合单分子长读段测序
采用定制cDNA富集策略的技术,以准确确定SD基因的转录,以及
我们将利用质谱技术的新发展,
并确定哪些基因被翻译。
本研究的目的是在基因组的片段重复区域中鉴定功能性蛋白质编码基因。
人类基因组本研究所发展之可推广方法可应用于重复空间
在其他基因组中也是如此。这些基因将成为未来人类进化研究的候选基因,
疾病如果成功的话,这项研究将为人类历史上最古老、最具挑战性的
人类基因组研究中的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Max Logan Dougherty其他文献
Max Logan Dougherty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 3.78万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 3.78万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 3.78万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 3.78万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 3.78万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 3.78万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 3.78万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 3.78万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 3.78万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 3.78万 - 项目类别:
Continuing Grant