Structure of an acid sensing ion channel in a resting state at high pH.
高 pH 下静息状态的酸传感离子通道的结构。
基本信息
- 批准号:9326027
- 负责人:
- 金额:$ 4.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:ASIC channelAcidosisAddressAffinityBehaviorBindingBinding SitesBiological AssayCalorimetryCationsCellsComplexCoupledCrystallizationDataDevelopmentDivalent CationsElectrophysiology (science)ExhibitsFamilyGlutamatesGoalsHomoImpairmentIon ChannelIonsIschemiaKnowledgeLearningLigandsLocationMapsMechanicsMediatingMembrane ProteinsMemoryModelingMolecularMolecular ConformationNeuraxisNeurologic ProcessNeuronal InjuryNeuroprotective AgentsNociceptionPathologicPathologic ProcessesPathologyPeripheral Nervous SystemPermeabilityPhysiological ProcessesPlant RootsPreventionProtonsRegulationResearchResolutionRestRoleSignal TransductionSiteSite-Directed MutagenesisStrokeStructural ModelsStructureStructure-Activity RelationshipSynapsesSynaptic plasticityTestingThermodynamicsThumb structureTitrationsTraumatic Brain InjuryValidationVestibuleWorkWristX-Ray Crystallographybasedesensitizationexperimental studyextracellularimprovedinsightmemberpatch clamppreventstoichiometrystructural biologytherapeutic target
项目摘要
Project Summary/Abstract
The Acid Sensing Ion Channel 1a (ASIC1a) is expressed throughout both central and peripheral nervous
systems and has been implicated in a variety of neurological processes. This homotrimeric channel responds
to extracellular acidosis with fast activation of an inward cationic current followed by rapid desensitization. Most
recently, ASIC1a has emerged as a regulator of synaptic plasticity as well as an important therapeutic target
for preventing ischemia-induced central nervous system damage common to both stoke and traumatic brain
injury. Importantly, a high-resolution structure of the resting (closed) ASIC1a channel and a detailed
understanding of the channel's pH-dependent gating mechanism have remained elusive. The overall goal of
this proposal is to address these major gaps in our understanding of the structure, function, and modulation of
the ASIC1a channel. Previously solved crystal structures of ASIC1a highlight distinct structural conformations
associated with both open and desensitized functional states. These results demonstrated that regions of the
trimeric channel, primarily thumb, palm, and wrist domains, exhibit structurally dynamic and state-dependent
behavior potentially important for channel gating. Additionally, though ASIC1a is primarily Na+-selective, the
channel is slightly permeable to and modulated by extracellular Ca2+. Intriguingly, all three above-mentioned
gating domains have been implicated in the Ca2+-dependent modulation of ASIC1a activity. It is currently
thought that these Ca2+-dependent modulatory effects may have their roots in disruption of channel gating
mechanics. A detailed molecular mechanism for this modulation, however, has yet to be determined. The
primary goal of this proposal is to utilize x-ray crystallography experiments to determine the high pH, resting
state structure of ASIC1a, the location of Ca2+ binding sites, and the channel's pH-dependent gating
mechanism. In support of this goal, a combination of whole-cell patch clamp electrophysiology and isothermal
titration calorimetry will be used to further characterize the modulatory interaction between ASIC1a and
extracellular Ca2+. The inherent difficultly of membrane protein structural biology makes a complete structural
representation covering all functional states of an ion channel very rare. At a basic level the work I am
proposing will expand our knowledge of ion channel structure/function relationships and improve our
understanding of the highly complex regulatory mechanisms present at central nervous system synapses.
Additionally, the information gained from this proposal could provide details important for the development of
neuroprotective agents used to treat conditions associated with central ischemia including stoke and traumatic
brain injury.
项目总结/摘要
酸敏感离子通道1a(ASIC 1a)在中枢和外周神经系统中都有表达。
系统,并已牵连在各种神经过程。这种同源三聚体通道响应
细胞外酸中毒伴随着内向阳离子电流的快速激活和随后的快速脱敏。最
近年来,ASIC 1a已成为突触可塑性的调节因子和重要的治疗靶点
用于预防斯托克和创伤性脑常见的缺血诱导的中枢神经系统损伤
损伤重要的是,静息(闭合)ASIC 1a通道的高分辨率结构和详细的
对通道的pH依赖性门控机制的理解仍然是难以捉摸的。的总目标
这一建议是为了解决我们在理解的结构,功能和调制的这些主要差距,
ASIC 1a通道以前解决的ASIC 1a的晶体结构突出了不同的结构构象
与开放和脱敏功能状态相关。这些结果表明,
三聚体通道,主要是拇指,手掌和手腕域,表现出结构动态和状态依赖性
对于通道选通潜在重要的行为。此外,尽管ASIC 1a主要是Na+选择性的,
通道对细胞外Ca 2+具有轻微的渗透性并受其调节。有趣的是,上述三者
门控结构域与ASIC 1a活性的Ca 2+依赖性调节有关。目前
我认为这些依赖于钙离子的调节作用可能源于通道门控的破坏
力学然而,这种调制的详细分子机制尚未确定。的
该提案的主要目标是利用X射线晶体学实验来确定高pH值、静息
ASIC 1a的状态结构、Ca 2+结合位点的位置和通道的pH依赖性门控
机制为了支持这一目标,结合全细胞膜片钳电生理学和等温
滴定量热法将用于进一步表征ASIC 1a和
细胞外Ca ~(2+)。膜蛋白结构生物学的固有困难使得一个完整的结构
覆盖离子通道所有功能状态的表示非常罕见。在一个基本的层面上,
提出将扩大我们对离子通道结构/功能关系的了解,并提高我们的
了解中枢神经系统突触高度复杂的调节机制。
此外,从这一提案中获得的信息可以为制定
用于治疗与中枢缺血有关的病症的神经保护剂,包括斯托克和创伤性
脑损伤
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathan Yoder其他文献
Nathan Yoder的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
肿瘤微环境因子Lactic acidosis在肿瘤细胞耐受葡萄糖剥夺中的作用机制研究
- 批准号:81301707
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Identification of factor to induce lactic acidosis in pre-metastatic niche
转移前微环境中诱导乳酸性酸中毒的因素的鉴定
- 批准号:
23K06620 - 财政年份:2023
- 资助金额:
$ 4.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Carbonic Anhydrase IX Acts as a Novel CO2/HCO3- Sensor and Protects the Pulmonary Endothelial Barrier from Acidosis
碳酸酐酶 IX 作为新型 CO2/HCO3- 传感器并保护肺内皮屏障免受酸中毒的影响
- 批准号:
10678442 - 财政年份:2023
- 资助金额:
$ 4.4万 - 项目类别:
Investigation based on both basic and clinical study about acidosis caused by piganide, SGLT2 inhibitor and surgical stress
皮甘尼、SGLT2抑制剂和手术应激引起的酸中毒的基础和临床研究
- 批准号:
23K08372 - 财政年份:2023
- 资助金额:
$ 4.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Role of proton-sensing G-protein-coupled receptors in the regulation of microglia and microvessel endothelial cell function in brain acidosis in a mouse ischemia reperfusion model.
质子感应 G 蛋白偶联受体在小鼠缺血再灌注模型脑酸中毒中调节小胶质细胞和微血管内皮细胞功能的作用。
- 批准号:
22K07342 - 财政年份:2022
- 资助金额:
$ 4.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Magnetic Resonance Fingerprinting of Tumor Vascular Perfusion and Acidosis
肿瘤血管灌注和酸中毒的磁共振指纹图谱
- 批准号:
10593285 - 财政年份:2022
- 资助金额:
$ 4.4万 - 项目类别:
Acidosis in pulmonary endothelial injury and repair
酸中毒与肺内皮损伤与修复
- 批准号:
10341493 - 财政年份:2022
- 资助金额:
$ 4.4万 - 项目类别:
Acidosis in pulmonary endothelial injury and repair
酸中毒与肺内皮损伤与修复
- 批准号:
10558528 - 财政年份:2022
- 资助金额:
$ 4.4万 - 项目类别:
Characterization of an abundant lactate-utilizing Campylobacter involved in mitigating rumen acidosis
参与减轻瘤胃酸中毒的丰富乳酸利用弯曲杆菌的表征
- 批准号:
557929-2021 - 财政年份:2022
- 资助金额:
$ 4.4万 - 项目类别:
Postgraduate Scholarships - Doctoral
Impact of metabolic acidosis on muscle mitochondrial energetics, metabolic health and physical endurance in persons with chronic kidney disease
代谢性酸中毒对慢性肾病患者肌肉线粒体能量学、代谢健康和身体耐力的影响
- 批准号:
10278747 - 财政年份:2021
- 资助金额:
$ 4.4万 - 项目类别:
Impact of metabolic acidosis on muscle mitochondrial energetics, metabolic health and physical endurance in persons with chronic kidney disease
代谢性酸中毒对慢性肾病患者肌肉线粒体能量学、代谢健康和身体耐力的影响
- 批准号:
10671682 - 财政年份:2021
- 资助金额:
$ 4.4万 - 项目类别: