Novel gene-silencing therapeutics for multidrug-resistant gram-negative pathogens
针对多重耐药革兰氏阴性病原体的新型基因沉默疗法
基本信息
- 批准号:9055626
- 负责人:
- 金额:$ 35.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-05-01 至 2018-04-30
- 项目状态:已结题
- 来源:
- 关键词:Acinetobacter baumanniiAlgorithmsAmericasAmpicillinAnimal ModelAnimalsAnti-Bacterial AgentsAntibiotic ResistanceAntibiotic-resistant organismAntibioticsBacteremiaBacteriaBacterial GenesBindingBurkholderia cepacia complexClinicalClinical ResearchCommunicable DiseasesDatabasesDevelopmentEscherichia coliEssential GenesFatty AcidsFutureGene SilencingGene TargetingGenesGoalsGram-Negative BacteriaGrowthHospitalsHumanIn VitroInfectionInflammationLeadLipopolysaccharide Biosynthesis PathwayMinimum Inhibitory Concentration measurementMorbidity - disease rateMulti-Drug ResistanceMusOrganismPathway interactionsPeptidesPeptidoglycanPharmaceutical PreparationsPhasePredispositionRNAResistanceRoleSalmonellaSalmonella typhimuriumSocietiesTechnologyTestingTherapeuticTherapeutic AgentsTherapeutic Usesabstractingantimicrobialbacterial resistancebactericidebasebeta-Lactam Resistancedesignfightingimprovedin vivokillingsmortalitymouse modelmulti-drug resistant pathogennovelnovel strategiespathogenphosphorodiamidate morpholino oligomerpre-clinicalresistance generesistance mechanismsynthetic constructtargeted treatmenttherapeutic developmenttherapeutic target
项目摘要
Project Summary/Abstract
The need for new antimicrobials is increasingly urgent. The rate of multidrug resistant pathogens continues to
increase leading to significant morbidity and mortality throughout the world. Furthermore, the current pipeline
for new antimicrobials remains very narrow. The Infectious Diseases Society of America has identified in their
"Bad Bugs, No Drugs" campaign, a group of pathogens that have become increasingly resistant to current
antibiotics. This group includes the Gram-negative pathogens Acinetobacter baumannii and Escherichia coli.
A new paradigm in antibiotic discovery and design has recently been shown effective against numerous
bacteria. This new approach is based on a platform technology called peptide-phosphorodiamidate mopholino
oligomers (PPMOs). PPMOs are synthetic DNA mimics that bind to RNA in a sequence-specific, antisense
manner and inhibit expression of essential bacterial genes. PPMOs have already been used successfully to kill
a variety of bacterial pathogens including the Gram-negative bacteria Escherichia coli, Salmonella
typhimurium, Burkholderia cepacia complex and Acinetobacter baumannii. PPMOS are bactericidal in culture,
and reduce bacteremia and improve survival in animal models of infection. PPMOs are more potent than
many traditional antibiotics such as ampicillin. The goal of this project is to develop PPMOs for therapeutic
use against the multidrug resistant pathogens Escherichia coli and Acinetobacter baumannii. The specific
aims are to design, produce and screen PPMOS against various gene targets in the multidrug-resistant
pathogens E. coli and A. baumannii. The experimental approach is to target genes in pathways that are
known or suspected to be essential for the growth of the organism, including genes for biosynthesis of
lipopolysaccharide, peptidoglycan, and fatty acids. Another approach will be to use PPMOs as adjunctive
therapies and target specific antibiotic resistance mechanisms in order to restore susceptibility to currently
used antibiotics. This technology provides a methodological advantage because many PPMOs can be rapidly
synthesized and simultaneously tested against numerous targets. This allows for the possibility of targeting
multiple genes in a single organism or the development of cocktails of PPMOs that target multiple pathogens.
This project will identify lead target PPMOs in E. coli and A. baumannii that can be moved forward to pre-
clinical and clinical studies.
项目总结/摘要
对新型抗菌剂的需求日益迫切。多药耐药病原体的比率继续上升,
增加,导致世界各地的发病率和死亡率大幅上升。此外,目前的管道
用于新的抗菌剂仍然非常狭窄。美国传染病协会在他们的研究中发现,
“坏虫子,没有药物”运动,一组病原体,已成为越来越多的耐药电流
抗生素该组包括革兰氏阴性病原体鲍氏不动杆菌和大肠杆菌。
抗生素发现和设计的新范式最近已被证明对许多
细菌这种新方法基于一种名为肽-磷酰二胺mopholino的平台技术
低聚物(PPMOs)。PPMO是合成的DNA模拟物,其以序列特异性反义寡核苷酸结合RNA。
方式并抑制细菌必需基因的表达。PPMO已经成功地用于杀死
多种细菌病原体,包括革兰氏阴性菌大肠杆菌、沙门氏菌
鼠伤寒沙门氏菌、洋葱伯克霍尔德氏菌复合菌和鲍氏不动杆菌。PPMOS在培养物中具有杀菌作用,
并减少菌血症和提高感染动物模型的存活率。PPMOs的效力比
许多传统抗生素如氨苄青霉素。该项目的目标是开发PPMO用于治疗
用于对抗多重耐药病原体大肠杆菌和鲍曼不动杆菌。具体
目的是设计,生产和筛选针对多药耐药细胞中各种基因靶点的PPMOS,
病原体E. coli和A.鲍曼不动杆菌。实验方法是靶向基因的途径,
已知或怀疑是生物体生长所必需的,包括生物合成的基因。
脂多糖、肽聚糖和脂肪酸。另一种方法是使用PPMO作为替代品,
治疗和靶向特定的抗生素耐药机制,以恢复对目前
使用抗生素。这种技术提供了一种方法上的优势,因为许多PMOs可以快速地
合成并同时针对多个目标进行测试。这就有可能瞄准
单一生物体中的多个基因或针对多种病原体的PPMO鸡尾酒的发展。
本项目将确定E. coli和A.鲍曼不动杆菌可以被转移到前
临床和临床研究。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sequence-Specific Targeting of Bacterial Resistance Genes Increases Antibiotic Efficacy.
- DOI:10.1371/journal.pbio.1002552
- 发表时间:2016-09
- 期刊:
- 影响因子:9.8
- 作者:Ayhan DH;Tamer YT;Akbar M;Bailey SM;Wong M;Daly SM;Greenberg DE;Toprak E
- 通讯作者:Toprak E
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Elihu Greenberg其他文献
David Elihu Greenberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Elihu Greenberg', 18)}}的其他基金
Antibiotic Resistance Determination Utilizing Machine Learning
利用机器学习确定抗生素耐药性
- 批准号:
10442982 - 财政年份:2022
- 资助金额:
$ 35.97万 - 项目类别:
Antibiotic Resistance Determination Utilizing Machine Learning
利用机器学习确定抗生素耐药性
- 批准号:
10663905 - 财政年份:2022
- 资助金额:
$ 35.97万 - 项目类别:
Development of Gene-Silencing Therapeutics for Pseudomonas aeruginosa
铜绿假单胞菌基因沉默疗法的开发
- 批准号:
10203746 - 财政年份:2019
- 资助金额:
$ 35.97万 - 项目类别:
Development of Gene-Silencing Therapeutics for Pseudomonas aeruginosa
铜绿假单胞菌基因沉默疗法的开发
- 批准号:
10451560 - 财政年份:2019
- 资助金额:
$ 35.97万 - 项目类别:
Gene silencing therapeutics for chronic infections in cystic fibrosis
囊性纤维化慢性感染的基因沉默疗法
- 批准号:
8511030 - 财政年份:2013
- 资助金额:
$ 35.97万 - 项目类别:
Gene silencing therapeutics for chronic infections in cystic fibrosis
囊性纤维化慢性感染的基因沉默疗法
- 批准号:
9248236 - 财政年份:2013
- 资助金额:
$ 35.97万 - 项目类别:
Gene silencing therapeutics for chronic infections in cystic fibrosis
囊性纤维化慢性感染的基因沉默疗法
- 批准号:
9039523 - 财政年份:2013
- 资助金额:
$ 35.97万 - 项目类别:
Novel gene-silencing therapeutics for multidrug-resistant gram-negative pathogens
针对多重耐药革兰氏阴性病原体的新型基因沉默疗法
- 批准号:
8842086 - 财政年份:2012
- 资助金额:
$ 35.97万 - 项目类别:
Novel gene-silencing therapeutics for multidrug-resistant gram-negative pathogens
针对多重耐药革兰氏阴性病原体的新型基因沉默疗法
- 批准号:
8823180 - 财政年份:2012
- 资助金额:
$ 35.97万 - 项目类别:
Novel gene-silencing therapeutics for multidrug-resistant gram-negative pathogens
针对多重耐药革兰氏阴性病原体的新型基因沉默疗法
- 批准号:
8463986 - 财政年份:2012
- 资助金额:
$ 35.97万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 35.97万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 35.97万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 35.97万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 35.97万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 35.97万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 35.97万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 35.97万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 35.97万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 35.97万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 35.97万 - 项目类别:
Research Grant














{{item.name}}会员




