Machine learning with generative mixture models for fetal monitoring

用于胎儿监测的生成混合模型的机器学习

基本信息

  • 批准号:
    9018050
  • 负责人:
  • 金额:
    $ 19.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-03-01 至 2018-02-28
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): For many years, there has been a concerted effort to automate the analysis of fetal heart rate (FHR) rhythms. However, despite significant advances in biomedical signal analysis, there has not been any significant improvement in automated decision support systems. FHR monitoring is now ubiquitous throughout delivery rooms, especially using the non-invasive Doppler monitor, but also using the fetal scalp electrode. Physician classification of fetal heart rate patterns is known to be a non-trivial problem because of significant inter and intra-observer variability of diagnosis. This has led to a marked increase in the number of caesarean deliveries, thereby increasing risk to the fetus and mother in many cases. This has further motivated the machine learning community to automate the classification procedure in the interest of accuracy and consistency as well as robustness with respect to noise. Usual approaches to this involve some type of supervised classification procedure, where the algorithm output on training data is compared with a "gold-standard" physician classification, followed by testing and validation on new datasets. However, since physician classification can be unreliable in the presence of the aforementioned diagnostic variability, as well as significant tracing noise, we propose the use of unsupervised algorithms to cluster FHR data records into clinically useful categories. We use nonparametric Bayes theory and Markov-time-dependence models for the evolution of feature sequences to propose methods that will achieve improved accuracy. The methods involve extraction of feature sequences from FHR time series data, which are modeled as samples from finite or infinite Dirichlet mixture models. We then use Gibbs sampling to obtain the cluster probabilities for each dataset. Clustering outcomes are compared against direct physician diagnosis and our current results are seen to be in broad agreement with them, while still giving new information on the character of different sub-groups of FHR records. With the proposed research, further gains in classification performance will be made.
描述(由申请人提供):多年来,人们一直致力于自动分析胎儿心率(FHR)节律。然而,尽管在生物医学信号分析方面取得了重大进展,但在自动决策支持系统方面没有任何重大改进。FHR监测现在在产房无处不在,特别是使用无创多普勒监测器,但也使用胎儿头皮电极。医生对胎儿心率模式的分类被认为是一个重要的问题,因为观察者之间和内部的诊断差异很大。这导致了显著的增长

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Towards Enabling Blind People to Fill Out Paper Forms with a Wearable Smartphone Assistant.
Dynamic classification of fetal heart rates by hierarchical Dirichlet process mixture models.
  • DOI:
    10.1371/journal.pone.0185417
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Yu K;Quirk JG;Djurić PM
  • 通讯作者:
    Djurić PM
FETAL HEART RATE CLASSIFICATION BY NON-PARAMETRIC BAYESIAN METHODS.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Petar M Djuric其他文献

Petar M Djuric的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Petar M Djuric', 18)}}的其他基金

Rethinking Electronic Fetal Monitoring to Improve Perinatal Outcomes and Reduce Frequency of Operative Vaginal and Cesarean Deliveries
重新思考电子胎儿监护以改善围产期结局并减少阴道手术和剖腹产的频率
  • 批准号:
    10627785
  • 财政年份:
    2019
  • 资助金额:
    $ 19.31万
  • 项目类别:
Rethinking Electronic Fetal Monitoring to Improve Perinatal Outcomes and Reduce Frequency of Operative Vaginal and Cesarean Deliveries
重新思考电子胎儿监护以改善围产期结局并减少阴道手术和剖腹产的频率
  • 批准号:
    10380847
  • 财政年份:
    2019
  • 资助金额:
    $ 19.31万
  • 项目类别:
Machine learning with generative mixture models for fetal monitoring
用于胎儿监测的生成混合模型的机器学习
  • 批准号:
    8816208
  • 财政年份:
    2015
  • 资助金额:
    $ 19.31万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.31万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 19.31万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 19.31万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 19.31万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 19.31万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 19.31万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 19.31万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 19.31万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 19.31万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 19.31万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了