The mechanism of Ire1-mediated mRNA cleavage during endoplasmic reticulum stress
内质网应激过程中Ire1介导的mRNA裂解机制
基本信息
- 批准号:9265477
- 负责人:
- 金额:$ 33.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBiochemicalCell DeathCell physiologyCellsChronicCleaved cellComplexDataDiabetes MellitusDiseaseDrug TargetingEndoplasmic ReticulumEndoribonucleasesEukaryotic CellGene TargetingGoalsHumanIn VitroIncomeInsulinIntegral Membrane ProteinLeadLinkMalignant NeoplasmsMediatingMembraneMembrane ProteinsMessenger RNAMolecularMolecular ChaperonesMolecular ConformationMonitorNeurodegenerative DisordersNon-Insulin-Dependent Diabetes MellitusOrganellesPathogenesisPathway interactionsPhosphorylationPhylogenetic AnalysisProductionProtein translocationProteinsReagentResearch ProposalsRibonucleasesRibosomesRoleSignal PathwaySignal Recognition ParticleSignal TransductionStressStructureSubstrate SpecificitySystemTestingXBP1 genebasecancer typecytotoxiceffective therapyendoplasmic reticulum stressenzyme activityexperimental studyimprovedmisfolded proteinnervous system disordernew therapeutic targetpolypeptidepreventprotein foldingproteoliposomesproteostasispublic health relevancereconstitutionresponseribosome profilingsecretory proteintissue culturetooltranscription factortranscriptome sequencing
项目摘要
DESCRIPTION (provided by applicant): The unfolded protein response (UPR) is an essential cell signaling system that detects the accumulation of misfolded proteins within the endoplasmic reticulum (ER) and initiates a cellular response in order to maintain protein homeostasis. Aberrations in UPR signaling can lead to multitude of diseased states ranging from type 2 diabetes to neurological disorders. The most ancient branch of the UPR signaling pathways is initiated by activation of the ER-localized endoribonuclease (RNase) Ire1 upon ER stress. Once activated, Ire1 specifically cleaves the cytosolic mRNA of XBP1 to produce an active transcription factor that drives expression of UPR target genes to mitigate ER stress. In addition,
Ire1 also promiscuously cleaves ER-localized mRNAs through the regulated Ire1-dependent decay (RIDD) pathway to reduce the burden of the incoming protein load. Although recent progress in understanding molecular basis of the Ire1/UPR pathway, fundamental mechanistic features of this pathway remain poorly understood. The goal of this application is to understand how Ire1 selectively finds and cleaves its mRNA substrates while avoiding non-specific cleavage of other cellular mRNAs. These studies will lead us to discover new steps in the UPR signaling, which can be targeted by drugs to treat diseases. The current research proposal is divided into two specific aims: 1. Determine how the RNase activity of Ire1 is regulated in cells. We have recently discovered that Ire1 is in a complex with the Sec61 translocon-ribosome in the ER membrane that facilitates cleavage of its correct mRNA substrates. We will first test the hypothesis that this complex may also prevent the non-specific RNase activity of Ire1 from accessing and cleaving cytosolic mRNAs by the use of RNA sequencing, biochemical and structural approaches. Second, we will establish a reconstituted proteoliposome system to test the role of the Sec61 translocon in regulating Ire1 oligomerization, phosphorylation and RNase activity in cells. 2. Determine how mRNA substrates are targeted to Ire1 in the ER membrane. We have shown that XBP1 mRNA, which encodes a soluble protein, utilizes the SRP pathway for targeting to the Ire1-Sec61 translocon complex for cleavage by Ire1. These and other studies raise two important questions. How are Ire1 substrate mRNAs that do not follow the SRP pathway targeted to Ire1 in the ER membrane? How Ire1 mRNA substrates are selectively targeted to Ire1-Sec61 translocon complexes in the ER membrane since Ire1 is a low abundant protein relative to Sec61? We will address these questions by a combination of ribosome profiling and biochemical reconstitution.
描述(由申请人提供):未折叠蛋白反应(UPR)是一种重要的细胞信号传导系统,可检测内质网(ER)内错误折叠蛋白的积聚,并启动细胞反应以维持蛋白质稳态。UPR信号传导的异常可导致从2型糖尿病到神经系统疾病的多种疾病状态。UPR信号通路最古老的分支是通过ER定位的核糖核酸内切酶(RNase)Ire 1在ER应激时的激活而启动的。一旦被激活,Ire 1特异性地切割XBP 1的胞质mRNA,产生一种活性转录因子,驱动UPR靶基因的表达,以减轻ER应激。此外,本发明还提供了一种方法,
Ire 1还通过受调节的Ire 1依赖性衰变(RIDD)途径混杂地切割ER定位的mRNA,以减少进入的蛋白质负荷的负担。虽然最近在了解Ire 1/UPR通路的分子基础方面取得了进展,但该通路的基本机制特征仍然知之甚少。本申请的目的是了解Ire 1如何选择性地发现和切割其mRNA底物,同时避免非特异性切割其他细胞mRNA。这些研究将引导我们发现UPR信号传导的新步骤,这些步骤可以被药物靶向治疗疾病。目前的研究建议分为两个具体目标:1。确定Ire 1的RNA酶活性在细胞中是如何调节的。我们最近发现Ire 1与ER膜中的Sec 61转座子-核糖体形成复合物,促进其正确mRNA底物的切割。我们将首先测试的假设,这种复合物也可以防止非特异性RNase活性的Ire 1访问和裂解细胞溶质的mRNA通过使用RNA测序,生物化学和结构的方法。第二,我们将建立一个重组的蛋白脂质体系统,以测试Sec 61易位在调节Ire 1寡聚化,磷酸化和RNA酶活性在细胞中的作用。2.确定mRNA底物如何靶向ER膜中的Ire 1。我们已经表明,编码可溶性蛋白的XBP 1 mRNA利用SRP途径靶向Ire 1-Sec 61转位子复合物,以被Ire 1切割。这些研究和其他研究提出了两个重要问题。不遵循SRP途径的Ire 1底物mRNA如何靶向ER膜中的Ire 1?Ire 1 mRNA底物如何选择性靶向ER膜中的Ire 1-Sec 61转位子复合物,因为Ire 1相对于Sec 61是低丰度蛋白质?我们将结合核糖体分析和生化重建来解决这些问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MALAIYALAM MARIAPPAN其他文献
MALAIYALAM MARIAPPAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MALAIYALAM MARIAPPAN', 18)}}的其他基金
The interplay between the UPR and protein biogenesis at the ER
UPR 和 ER 蛋白质生物发生之间的相互作用
- 批准号:
10211808 - 财政年份:2016
- 资助金额:
$ 33.08万 - 项目类别:
The interplay between the UPR and protein biogenesis at the ER
UPR 和 ER 蛋白质生物发生之间的相互作用
- 批准号:
10614583 - 财政年份:2016
- 资助金额:
$ 33.08万 - 项目类别:
The interplay between the UPR and protein biogenesis at the ER
UPR 和 ER 蛋白质生物发生之间的相互作用
- 批准号:
10403561 - 财政年份:2016
- 资助金额:
$ 33.08万 - 项目类别:
相似海外基金
Regulating programmed cell death in engineered 3D cell culture models by tuning the mechanical and biochemical properties of biomaterials for drug discovery and disease modeling applications
通过调整生物材料的机械和生化特性来调节工程 3D 细胞培养模型中的程序性细胞死亡,用于药物发现和疾病建模应用
- 批准号:
532965-2019 - 财政年份:2020
- 资助金额:
$ 33.08万 - 项目类别:
Postdoctoral Fellowships
Regulating programmed cell death in engineered 3D cell culture models by tuning the mechanical and biochemical properties of biomaterials for drug discovery and disease modeling applications
通过调整生物材料的机械和生化特性来调节工程 3D 细胞培养模型中的程序性细胞死亡,用于药物发现和疾病建模应用
- 批准号:
532965-2019 - 财政年份:2019
- 资助金额:
$ 33.08万 - 项目类别:
Postdoctoral Fellowships
Biochemical Dissection of the Execution Step of Mammalian Necrotic Cell Death
哺乳动物坏死细胞死亡执行步骤的生化剖析
- 批准号:
8912795 - 财政年份:2016
- 资助金额:
$ 33.08万 - 项目类别:
Biochemical study of molecular target therapy for retinal ganglion cell death in glaucoma
分子靶向治疗青光眼视网膜神经节细胞死亡的生化研究
- 批准号:
25861611 - 财政年份:2013
- 资助金额:
$ 33.08万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
PARG- Mediated Cell Death: Biochemical Mechanisms
PARG-介导的细胞死亡:生化机制
- 批准号:
6907712 - 财政年份:2005
- 资助金额:
$ 33.08万 - 项目类别:
Role of mitochondria in cell death: Biochemical mechanism of activation of cell death induced by reactive oxygen species
线粒体在细胞死亡中的作用:活性氧诱导细胞死亡激活的生化机制
- 批准号:
238744-2005 - 财政年份:2005
- 资助金额:
$ 33.08万 - 项目类别:
Discovery Grants Program - Individual
PARG- Mediated Cell Death: Biochemical Mechanisms
PARG-介导的细胞死亡:生化机制
- 批准号:
7068509 - 财政年份:2005
- 资助金额:
$ 33.08万 - 项目类别:
Oxidative stress in neuronal cell death: biochemical mechanism of cell death by reactive oxygen species
神经元细胞死亡中的氧化应激:活性氧导致细胞死亡的生化机制
- 批准号:
238744-2001 - 财政年份:2003
- 资助金额:
$ 33.08万 - 项目类别:
Discovery Grants Program - Individual
Oxidative stress in neuronal cell death: biochemical mechanism of cell death by reactive oxygen species
神经元细胞死亡中的氧化应激:活性氧导致细胞死亡的生化机制
- 批准号:
238744-2001 - 财政年份:2002
- 资助金额:
$ 33.08万 - 项目类别:
Discovery Grants Program - Individual
Oxidative stress in neuronal cell death: biochemical mechanism of cell death by reactive oxygen species
神经元细胞死亡中的氧化应激:活性氧导致细胞死亡的生化机制
- 批准号:
238744-2001 - 财政年份:2001
- 资助金额:
$ 33.08万 - 项目类别:
Discovery Grants Program - Individual