Structural parameters of flagellar rod and filament assembly in Bacillus subtilis
枯草芽孢杆菌鞭毛杆和丝组装的结构参数
基本信息
- 批准号:9327547
- 负责人:
- 金额:$ 5.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimal ModelAntibiotic TherapyAreaBacillus (bacterium)Bacillus subtilisBacteriaBacterial ProteinsBasal PlateBiochemicalBiological AssayBiological ProcessBiomedical EngineeringBiotechnologyCell membraneCell physiologyCellsCellular biologyClinicalComplexDataDiseaseElectron MicroscopyEnsureEnvironmentEscherichia coliFilamentFlagellaGeneticGenetic TechniquesGenetic TranscriptionGram-Positive BacteriaGrowthIndividualInvestigationLabelLengthMaintenanceMeasuresMediatingMembraneMethodsMicroscopyModelingMolecularMorphologyMotorMovementOrganismPathogenesisPathogenicityPeptidoglycanProteinsRegulationReportingResearchSalmonella typhimuriumStaining methodStainsStructureSystemTechniquesThickTimeTranslationsVariantVirulenceVirulence Factorscell motilityexperimental studyextracellularfitnessforward geneticsinsightkinetosomeknowledge basemutantnanomachinenovelperiplasmpolymerizationpreventrepairedretinal rods
项目摘要
PROJECT SUMMARY
Bacteria assemble large extracellular complexes called nanomachines to differentially interact with their
environment. Nanomachines enact specific functions, including substrate secretion, cell motility, and
pathogenesis. The regulation and structural composition of bacterial protein nanomachines is inherently
complex. One such nanomachine, the flagellar apparatus, is critical for bacterial motility, and its assembly is
highly ordered. Many regulatory systems are in place to ensure that proper assembly of the flagella occurs both
spatially and temporally. Many studies investigate the composition of the flagellar structure as well as how the
host regulates transcription and translation of its various components. However, less is known regarding the
systems in place controlling accurate assembly of the flagellum.
One of the major components of the flagellum is the extracellular filament, which is responsible for
generating thrust to mobilize the cell. The majority of studies focusing on filament assembly use the Gram-
negative organisms Salmonella typhimurium and Escherichia coli. Investigations suggest that these two closely
related organisms maintain distinct mechanisms regulating filament length, as well as repair. Whether the
precise regulation of filament length is necessary for efficient motility across all species is unknown. Using the
genetically tractable, Gram-positive model bacterium Bacillus subtilis, we propose to determine the mechanisms
employed by this organism to control filament growth and length, as well as whether filament repair occurs.
Additionally, mechanisms regulating the length of the flagellar rod spanning from the membrane-bound
flagellar motor to the extracellular filament in B. subtilis is unknown. Four proteins putatively make up the B.
subtilis rod, but their order of assembly is currently unknown. Further, the rod must precisely traverse a large
distance in both Gram-negative (periplasm) and Gram-positive (peptidoglycan) organisms to initiate assembly
of the flagellar filament. Thus, the cell must regulate rod length to accurately span these depths. Although
studies in the Gram-negative S. typhimurium show rod length is determined via interaction with the outer
membrane, a lack of an outer membrane in Gram-positive organisms indicates a different mechanism is in place.
We will identify the structural composition of the rod and determine the components controlling rod length.
The aims of this proposal and experiments suggested focus on the structural organization of the flagellar
rod and filament, specifically to: (i) assess the cell mechanisms controlling flagellar filament length and
elongation, and (ii) define the components that make up the rod and determine the regulation of its length and
assembly. We will address the proposed experiments using genetic, biochemical, and cell biology techniques.
Overall, these aims intend to promote our understanding of bacterial nanomachine regulation and their
contributions to cell physiology and fitness.
项目摘要
细菌组装称为纳米机器的大型细胞外复合物,以与它们的
环境纳米机器发挥特定的功能,包括底物分泌,细胞运动,
发病机制细菌蛋白纳米机器的调控和结构组成本质上是
复杂.一种这样的纳米机器,鞭毛装置,对细菌运动至关重要,它的组装是
高度有序。许多调节系统是适当的,以确保正确的组装鞭毛发生,
空间上和时间上。许多研究调查了鞭毛结构的组成,以及如何
宿主调节其各种组分的转录和翻译。然而,关于这一点知之甚少。
控制鞭毛精确组装的系统。
鞭毛的主要成分之一是胞外丝,它负责
产生推动力来移动细胞。大多数专注于细丝组装的研究使用革兰氏染色法,
阴性微生物鼠伤寒沙门氏菌和大肠杆菌。调查显示,这两个
相关的生物体保持调节细丝长度以及修复的独特机制。是否
对丝长度的精确调节对于在所有物种中的有效运动是必要的,这是未知的。使用
遗传上易处理的革兰氏阳性模式菌枯草芽孢杆菌,我们建议确定机制
这种生物体用来控制纤维生长和长度,以及纤维修复是否发生。
此外,调节鞭毛杆从膜结合的细胞跨越的长度的机制,
在B中,鞭毛运动到细胞外丝。subtilis未知。B由四种蛋白质组成。
枯草杆菌棒,但其组装顺序目前未知。此外,杆必须精确地穿过大的
在革兰氏阴性(周质)和革兰氏阳性(肽聚糖)生物体中启动组装的距离
鞭毛丝因此,细胞必须调节杆长度以准确地跨越这些深度。虽然
革兰氏阴性S.鼠伤寒沙门氏菌显示杆长度是通过与外部的相互作用确定的
膜,革兰氏阳性生物体中缺乏外膜表明存在不同的机制。
我们将确定棒的结构组成,并确定控制棒长度的组件。
这个提议和实验的目的是集中在鞭毛的结构组织上
杆和丝,具体地说:(i)评估控制鞭毛丝长度的细胞机制,
伸长,和(ii)限定组成杆的部件并确定其长度的调节,和
组装件.我们将使用遗传学、生物化学和细胞生物学技术来解决所提出的实验。
总的来说,这些目标旨在促进我们对细菌纳米机器调控及其
对细胞生理和健康的贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Michael Burrage其他文献
Andrew Michael Burrage的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 5.67万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 5.67万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 5.67万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 5.67万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 5.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 5.67万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 5.67万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 5.67万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 5.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 5.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




