Structural parameters of flagellar rod and filament assembly in Bacillus subtilis

枯草芽孢杆菌鞭毛杆和丝组装的结构参数

基本信息

  • 批准号:
    9327547
  • 负责人:
  • 金额:
    $ 5.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-06-01 至 2019-05-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Bacteria assemble large extracellular complexes called nanomachines to differentially interact with their environment. Nanomachines enact specific functions, including substrate secretion, cell motility, and pathogenesis. The regulation and structural composition of bacterial protein nanomachines is inherently complex. One such nanomachine, the flagellar apparatus, is critical for bacterial motility, and its assembly is highly ordered. Many regulatory systems are in place to ensure that proper assembly of the flagella occurs both spatially and temporally. Many studies investigate the composition of the flagellar structure as well as how the host regulates transcription and translation of its various components. However, less is known regarding the systems in place controlling accurate assembly of the flagellum. One of the major components of the flagellum is the extracellular filament, which is responsible for generating thrust to mobilize the cell. The majority of studies focusing on filament assembly use the Gram- negative organisms Salmonella typhimurium and Escherichia coli. Investigations suggest that these two closely related organisms maintain distinct mechanisms regulating filament length, as well as repair. Whether the precise regulation of filament length is necessary for efficient motility across all species is unknown. Using the genetically tractable, Gram-positive model bacterium Bacillus subtilis, we propose to determine the mechanisms employed by this organism to control filament growth and length, as well as whether filament repair occurs. Additionally, mechanisms regulating the length of the flagellar rod spanning from the membrane-bound flagellar motor to the extracellular filament in B. subtilis is unknown. Four proteins putatively make up the B. subtilis rod, but their order of assembly is currently unknown. Further, the rod must precisely traverse a large distance in both Gram-negative (periplasm) and Gram-positive (peptidoglycan) organisms to initiate assembly of the flagellar filament. Thus, the cell must regulate rod length to accurately span these depths. Although studies in the Gram-negative S. typhimurium show rod length is determined via interaction with the outer membrane, a lack of an outer membrane in Gram-positive organisms indicates a different mechanism is in place. We will identify the structural composition of the rod and determine the components controlling rod length. The aims of this proposal and experiments suggested focus on the structural organization of the flagellar rod and filament, specifically to: (i) assess the cell mechanisms controlling flagellar filament length and elongation, and (ii) define the components that make up the rod and determine the regulation of its length and assembly. We will address the proposed experiments using genetic, biochemical, and cell biology techniques. Overall, these aims intend to promote our understanding of bacterial nanomachine regulation and their contributions to cell physiology and fitness.
项目总结 细菌组装称为纳米机器的大型细胞外复合体,以差异地与其相互作用 环境。纳米机器具有特定的功能,包括底物分泌、细胞运动和 发病机制。细菌蛋白质纳米机器的调节和结构组成是天生的 很复杂。一种这样的纳米机器,鞭毛器,对细菌的运动至关重要,它的组装是 高度有序。许多调节系统已经到位,以确保鞭毛的正确组装发生在 在空间上和时间上。许多研究调查鞭毛结构的组成以及如何 宿主调控其各种成分的转录和翻译。然而,人们对此知之甚少 控制鞭毛的准确组装的系统到位。 鞭毛的主要成分之一是细胞外丝,它负责 产生推力来动员细胞。大多数关于细丝组装的研究使用的是Gram- 阴性生物鼠伤寒沙门氏菌和大肠杆菌。调查显示,这两人关系密切 相关的生物体维持着调节细丝长度和修复的不同机制。无论是 对于所有物种的有效运动来说,精确地调节丝长是必要的,这是未知的。使用 基因易驯化的革兰氏阳性模式菌枯草芽孢杆菌,我们建议确定其机制 被这种生物用来控制细丝的生长和长度,以及是否发生细丝修复。 此外,调节从膜结合的鞭毛杆的长度的机制 枯草杆菌鞭毛对胞外细丝的运动尚不清楚。据推测,B蛋白由四种蛋白质组成。 枯草杆菌杆,但它们的组装顺序目前尚不清楚。此外,杆子必须精确地横穿一个大的 革兰氏阴性菌(周质)和革兰氏阳性菌(肽聚糖)启动组装的距离 鞭毛细丝的。因此,电池必须调节杆长才能准确地跨越这些深度。虽然 对革兰氏阴性鼠伤寒沙门氏菌的研究表明,杆状杆菌的长度是通过与外部的相互作用来决定的 在革兰氏阳性菌中缺乏外膜,表明存在不同的机制。 我们将确定棒材的结构组成,并确定控制棒材长度的部件。 这项建议的目的和实验表明,重点是鞭毛的结构组织 杆和细丝,特别是为了:(I)评估控制鞭毛细丝长度和 伸长率,以及(Ii)确定组成棒材的部件并确定其长度和长度的调节 集合。我们将使用遗传学、生物化学和细胞生物学技术解决拟议的实验。 总体而言,这些目标旨在促进我们对细菌纳米机器调节和它们的 对细胞生理学和健身的贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Michael Burrage其他文献

Andrew Michael Burrage的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
  • 批准号:
    495434
  • 财政年份:
    2023
  • 资助金额:
    $ 5.67万
  • 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
  • 批准号:
    10642519
  • 财政年份:
    2023
  • 资助金额:
    $ 5.67万
  • 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
  • 批准号:
    10586596
  • 财政年份:
    2023
  • 资助金额:
    $ 5.67万
  • 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
  • 批准号:
    10590479
  • 财政年份:
    2023
  • 资助金额:
    $ 5.67万
  • 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
  • 批准号:
    23K06011
  • 财政年份:
    2023
  • 资助金额:
    $ 5.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
  • 批准号:
    10682117
  • 财政年份:
    2023
  • 资助金额:
    $ 5.67万
  • 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
  • 批准号:
    10708517
  • 财政年份:
    2023
  • 资助金额:
    $ 5.67万
  • 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
  • 批准号:
    10575566
  • 财政年份:
    2023
  • 资助金额:
    $ 5.67万
  • 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
  • 批准号:
    23K15696
  • 财政年份:
    2023
  • 资助金额:
    $ 5.67万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
  • 批准号:
    23K15867
  • 财政年份:
    2023
  • 资助金额:
    $ 5.67万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了