Nitric oxide and microvessel permeability in vivo
一氧化氮和体内微血管通透性
基本信息
- 批准号:9258790
- 负责人:
- 金额:$ 46.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-12-12 至 2020-11-30
- 项目状态:已结题
- 来源:
- 关键词:Animal OrganAntioxidantsApoptoticBlood VesselsCardiovascular DiseasesCellsClinicalCodeComplicationConfocal MicroscopyDevelopmentDiabetes MellitusDiseaseElectron MicroscopyElectronsEndothelial CellsEnzymesFeedbackFunctional disorderGenesHydrogen PeroxideImageImmunofluorescence ImmunologicIndividualInflammationInflammation MediatorsInflammatoryInvestigationKnock-outLinkLipid PeroxidationLipid PeroxidesLiquid substanceMeasurementMediatingMembrane LipidsMetabolicMicroscopicMicrovascular DysfunctionMicrovascular PermeabilityModelingMolecularNOS3 geneNitratesNitric OxideNitric Oxide SynthaseNucleic AcidsOxidantsPathogenesisPathologicPathway interactionsPatternPericytesPermeabilityPeroxonitritePlasmaPlayProductionProteinsRattusReactionReactive Nitrogen SpeciesReactive Oxygen SpeciesReportingResearchRoleSignal PathwaySignal TransductionSignaling MoleculeSiteStructureSuperoxidesTestingTyrosineVascular DiseasesVascular PermeabilitiesVirulence Factorsarteriolecatalasecell injurydesigndiabeticdiabetic ratenzyme activityexperimental studyin vivoinsightnitrationnovel therapeutic interventionoxidized lipidresponsesolutetargeted treatmenttranscription factorvascular bedvasomotionvenule
项目摘要
PROJECT SUMMARY
Increased reactive oxygen species (ROS) have been considered to be the main pathogenic factors in the
development and progression of vascular dysfunction in diabetes. However, the mechanisms of ROS-induced
microvascular complications and the interplay of ROS with nitric oxide (NO) and reactive nitrogen species
(RNS) under diabetic conditions remain poorly understood. Currently, ROS-induced endothelial NO synthase
(eNOS) uncoupling and NO deficiency-mediated vascular dysfunction have been extensively studied in
cultured endothelial cells and arterioles. Very little is known about the direct effect of ROS on eNOS activity
and permeability in venules, a crucial site for solute and fluid exchange and a major site of inflammation. Our
preliminary studies conducted in intact rat venules revealed the roles of H2O2 in eNOS activation, NO
production, peroxynitrite formation, and cellular and molecular mechanisms of H2O2-mediated permeability
increases. Our findings that diabetic rats have increased plasma H2O2 and decreased catalase activity suggest
that the mechanisms of H2O2-mediated changes in microvascular permeability may resemble those involved in
ROS-mediated microvessel complication in diabetes. We hypothesize that ROS do not reduce NO production,
but rather cause excessive NO production and peroxynitrite formation in venules. The NO-derived peroxynitrite
further activates eNOS, resulting in augmented peroxynitrite formation. This self-promoting mechanism is the
key for H2O2-induced peroxynitrite-mediated cell injury, Ca2+ overload in endothelial cells, and microvascular
barrier dysfunction. The hypothesis will be tested in three specific aims: 1) investigate the cellular mechanisms
of H2O2-induced NO production and NO-mediated microvascular barrier dysfunction; 2) investigate the role of
NO-derived peroxynitrite in H2O2-induced microvascular barrier dysfunction; and 3) investigate the cellular and
molecular mechanisms of ROS-mediated microvascular dysfunction in diabetes. The designed experiments
with combined quantitative measurements of microvessel permeability along with confocal and electron
microscopic investigation in individually perfused microvessels enable ROS-mediated changes in signaling
molecules, enzyme activities, and vascular structures to be directly linked with changes in vascular barrier
function. The addition of newly developed Nrf2 knockout rats that genetically modify antioxidant defenses into
the proposal will benefit the mechanistic investigations of ROS-mediated microvascular complications in
diabetes. The results derived from this proposal will provide new information that bridges studies using whole
animals, organs, or vascular beds with studies using cultured endothelial cells and provide a better
understanding of the pathogenesis of diabetes-associated microvascular complication and benefit the
development of targeted therapeutics.
项目摘要
活性氧(ROS)的增加被认为是肝纤维化的主要致病因素。
糖尿病血管功能障碍的发展和进展。然而,ROS诱导的机制
微血管并发症和ROS与一氧化氮(NO)和活性氮的相互作用
(RNS)在糖尿病条件下仍然知之甚少。目前,ROS诱导的内皮NO合酶
eNOS解偶联和NO缺乏介导的血管功能障碍已在许多研究中得到广泛研究。
培养的内皮细胞和小动脉。关于ROS对eNOS活性的直接影响知之甚少
以及小静脉的渗透性,小静脉是溶质和液体交换的关键部位,也是炎症的主要部位。我们
在完整大鼠微静脉中进行的初步研究揭示了H2 O2在eNOS激活、NO
过氧化氢的产生、过氧亚硝酸盐的形成以及H2 O2介导的渗透性的细胞和分子机制
增大我们发现糖尿病大鼠血浆H2 O2增加,过氧化氢酶活性降低,这表明
H2 O2介导的微血管通透性变化的机制可能与
ROS介导的糖尿病微血管并发症我们假设ROS不会减少NO的产生,
而是引起小静脉中过量的NO产生和过氧亚硝酸盐形成。NO衍生的过氧亚硝酸盐
进一步激活eNOS,导致过氧亚硝酸盐形成增加。这种自我促进的机制是
H2 O2诱导的过氧亚硝酸盐介导的细胞损伤、内皮细胞中的Ca 2+超载和微血管的关键
屏障功能障碍本研究将从以下三个方面对这一假说进行检验:1)研究细胞机制
H2 O2诱导的NO产生和NO介导的微血管屏障功能障碍; 2)研究H2 O2诱导的NO产生和NO介导的微血管屏障功能障碍的作用。
NO衍生的过氧亚硝酸盐在H2 O2诱导的微血管屏障功能障碍中的作用; 3)研究细胞和
ROS介导的糖尿病微血管功能障碍的分子机制设计的实验
结合微血管通透性的定量测量沿着与共聚焦和电子
在单独灌注的微血管中的显微镜研究使ROS介导的信号传导变化成为可能,
分子、酶活性和血管结构与血管屏障的变化直接相关
功能新开发的Nrf 2基因敲除大鼠的加入,
这一建议将有利于ROS介导的微血管并发症的机制研究,
糖尿病从这一建议得出的结果将提供新的信息,桥梁研究使用整体
动物,器官或血管床与研究使用培养的内皮细胞,并提供了一个更好的
了解糖尿病相关微血管并发症的发病机制,
发展靶向治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PINGNIAN HE其他文献
PINGNIAN HE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PINGNIAN HE', 18)}}的其他基金
Role of increased circulating microparticles in adverse outcomes of COVID-19 patients with diabetes
循环微粒增加对患有糖尿病的 COVID-19 患者不良后果的影响
- 批准号:
10547868 - 财政年份:2022
- 资助金额:
$ 46.95万 - 项目类别:
Red blood cell released ATP in disturbed blood flow-initiated site specific vascular inflammation and atherosclerosis
红细胞在血流紊乱引发的特定部位血管炎症和动脉粥样硬化中释放 ATP
- 批准号:
10457975 - 财政年份:2019
- 资助金额:
$ 46.95万 - 项目类别:
Red blood cell released ATP in disturbed blood flow-initiated site specific vascular inflammation and atherosclerosis
红细胞在血流紊乱引发的特定部位血管炎症和动脉粥样硬化中释放 ATP
- 批准号:
10180296 - 财政年份:2019
- 资助金额:
$ 46.95万 - 项目类别:
Red blood cell released ATP in disturbed blood flow-initiated site specific vascular inflammation and atherosclerosis
红细胞在血流紊乱引发的特定部位血管炎症和动脉粥样硬化中释放 ATP
- 批准号:
10221039 - 财政年份:2019
- 资助金额:
$ 46.95万 - 项目类别:
Microparticles and microvascular dysfunction in diabetes
糖尿病中的微粒和微血管功能障碍
- 批准号:
8680231 - 财政年份:2013
- 资助金额:
$ 46.95万 - 项目类别:
Microparticles and microvascular dysfunction in diabetes
糖尿病中的微粒和微血管功能障碍
- 批准号:
9120245 - 财政年份:2013
- 资助金额:
$ 46.95万 - 项目类别:
Microparticles and microvascular dysfunction in diabetes
糖尿病中的微粒和微血管功能障碍
- 批准号:
8996443 - 财政年份:2013
- 资助金额:
$ 46.95万 - 项目类别:
Microparticles and microvascular dysfunction in diabetes
糖尿病中的微粒和微血管功能障碍
- 批准号:
8578849 - 财政年份:2013
- 资助金额:
$ 46.95万 - 项目类别:
Nitric Oxide and Microvessel Permeability In Vivo
体内一氧化氮和微血管通透性
- 批准号:
7747939 - 财政年份:2007
- 资助金额:
$ 46.95万 - 项目类别:
Nitric Oxide and Microvessel Permeability In Vivo
体内一氧化氮和微血管通透性
- 批准号:
7213844 - 财政年份:2007
- 资助金额:
$ 46.95万 - 项目类别:
相似海外基金
Enhancing gamete cryoprotective properties of graphene oxide by dual functionalization with antioxidants and non-penetrating cryoprotectant molecules
通过抗氧化剂和非渗透性冷冻保护剂分子的双重功能化增强氧化石墨烯的配子冷冻保护特性
- 批准号:
24K18002 - 财政年份:2024
- 资助金额:
$ 46.95万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
SBIR Phase I: Sustainable antioxidants for industrial process fluids
SBIR 第一阶段:工业过程流体的可持续抗氧化剂
- 批准号:
2222215 - 财政年份:2023
- 资助金额:
$ 46.95万 - 项目类别:
Standard Grant
Development of a new bone augmentation method that enables long-term survival and long-term functional expression of transplanted cells by antioxidants
开发一种新的骨增强方法,通过抗氧化剂使移植细胞能够长期存活和长期功能表达
- 批准号:
23K09272 - 财政年份:2023
- 资助金额:
$ 46.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-Invasive Probing Cellular Oxidative Stress and Antioxidants Therapeutic Effectiveness
非侵入性探测细胞氧化应激和抗氧化剂的治疗效果
- 批准号:
10652764 - 财政年份:2023
- 资助金额:
$ 46.95万 - 项目类别:
Mitochondria-targeting Novel Cationic Hydrazone Antioxidants for the Treatment of Preeclampsia
线粒体靶向新型阳离子腙抗氧化剂用于治疗先兆子痫
- 批准号:
10730652 - 财政年份:2023
- 资助金额:
$ 46.95万 - 项目类别:
Latent Antioxidants for Environmentally Responsible Polymer Formulations
用于环保聚合物配方的潜在抗氧化剂
- 批准号:
RGPIN-2018-04107 - 财政年份:2022
- 资助金额:
$ 46.95万 - 项目类别:
Discovery Grants Program - Individual
Contribution of antioxidants to regeneration of rotator cuff insertion
抗氧化剂对肩袖插入再生的贡献
- 批准号:
22K16720 - 财政年份:2022
- 资助金额:
$ 46.95万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Effects of different doses of antioxidants(Vitamin E) intake on exercise induced oxidative stress, antioxidative capacity and chronic inflammation
不同剂量抗氧化剂(维生素E)摄入对运动引起的氧化应激、抗氧化能力和慢性炎症的影响
- 批准号:
22K11609 - 财政年份:2022
- 资助金额:
$ 46.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Polyunsaturated fatty acid (PUFA), inflammation and antioxidants
多不饱和脂肪酸 (PUFA)、炎症和抗氧化剂
- 批准号:
RGPIN-2019-05674 - 财政年份:2022
- 资助金额:
$ 46.95万 - 项目类别:
Discovery Grants Program - Individual
Suppressed methemoglobin formation of artificial red cell by liposomal antioxidants and its mechanism.
脂质体抗氧化剂抑制人工红细胞高铁血红蛋白形成及其机制
- 批准号:
22K12824 - 财政年份:2022
- 资助金额:
$ 46.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




