Lesion Composition and Quantitative Imaging Analysis on Breast Cancer Diagnosis
乳腺癌诊断中的病灶构成和定量影像分析
基本信息
- 批准号:9438084
- 负责人:
- 金额:$ 6.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-03-06 至 2018-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAlgorithmic AnalysisBenignBiologicalBiological MarkersBiological Neural NetworksBiopsyBreastBreast Cancer Early DetectionBreast biopsyCancer DetectionCancerousCharacteristicsClinicalComplementComputer AssistedContrast MediaDescriptorDiagnosisDiagnosticDiagnostic ImagingDiagnostic SensitivityDiagnostic SpecificityDigital Breast TomosynthesisDigital ComputersDigital MammographyEffectivenessFibroadenomaGoalsHealthImageImage AnalysisKnowledgeLeadLesionLipidsLogistic ModelsLogistic RegressionsMalignant - descriptorMalignant NeoplasmsMammographyMeasurementMeasuresMethodsMissionModelingMorphologyNoninfiltrating Intraductal CarcinomaOutcomeOutcome StudyOutputPainParticipantPerformanceProbabilityProceduresProteinsPublic HealthRecruitment ActivityResearchResearch SupportRisk FactorsRisk MarkerSensitivity and SpecificityShapesSpecificitySystemTechnologyTestingTextureThickThree-Dimensional ImagingTissuesUnited States National Institutes of HealthWaterWomanbasebreast cancer diagnosisbreast imagingbreast lesioncancer diagnosiscancer invasivenesscancer riskclinical riskdesigndiagnostic accuracydisorder preventionhuman diseaseimaging biomarkerimprovedinnovationmalignant breast neoplasmnovelpredictive modelingprogramsprospectivepublic health relevancequantitative imagingradiologistscreeningtoolvalidation studies
项目摘要
DESCRIPTION (provided by applicant): The full impacts of digital mammography and computer-aided diagnostic (CAD/QIA) systems on the performance of diagnostic mammography are yet to be realized. Lesion composition as described by its 3 compositional thicknesses of protein, lipid, and water (3CB) was recently discovered to be a strong descriptor of abnormal breast lesions. The long-term goal of this project is to reduce unnecessary breast biopsies by creating diagnostic imaging models using the strongest CAD/QIA algorithms incorporating advances such as 3CB. Our objective is to quantify lipid-protein-water signatures around CAD/QIA markers to better predict malignant findings. Our central hypothesis is that lesion composition can be combined with existing CAD/QIA methods to improve the specificity of cancer diagnosis and reduce the number of unnecessary biopsies. Our specific aims are as follows: to 1) investigate the sensitivity and specificity of localized 3CB to distinguish breast cancer from benign lesions on prospectively acquired diagnostic mammograms of women recommended to undergo biopsy, 2) compare the sensitivity and specificity of 3CB to an established CAD/QIA method and conventional morphological BI-RADS descriptors, 3) develop a predictive diagnostic model to quantify the probability mammographic findings require biopsy versus don't require biopsy based on clinical risk factors, CAD/QIA measures and 3CB measures, and secondary) investigate advantages of 3-dimensional 3CB signatures using dual-energy digital breast tomosynthesis. The working hypotheses for each are as follows: aim 1 - that unique 3CB signatures of lipid, protein, and water exist for breast cancer versus benign lesions and that this information can be used to better identify lesions that require breast biopsy aim 2 - that automated diagnostic CAD/QIA will yield quantitative lesion features that either correlate with or complement (independent) to the compositional signatures, aim 3 - that localized 3CB measures and established CAD/QIA measures are independent methods that assess different predictors of breast cancer and benign lesions and that the combination of measures from the two methods in a single model will increase the sensitivity and specificity from either one alone, secondary aim - that 3D mammography will provide more accurate lesions compositions than 2D imaging. The research's innovation is the combination of the two independent imaging risk markers: 3CB and a powerful CAD/QIA model, and compares it to the clinical standards used by radiologist. The expected outcomes include 1) a novel 3CB and CAD/QIA combined and accessible technology that will yield improved discernibility between cancerous and benign mammographic findings, 2) extensive, and biologically relevant knowledge on how lesion composition correlates with CAD/QIA findings, and 3) an demonstration of an optimized image-based predictive model for malignancy. We expected an important positive impact because more accurately identification of women with and without breast cancer will reduce the harm of unnecessary biopsies.
描述(由申请人提供):数字乳房X线摄影和计算机辅助诊断(CAD/QIA)系统对诊断乳房X线摄影的性能的全部影响尚待实现。如其3个蛋白质,脂质和水(3CB)的3个成分厚度所描述的病变成分最近被发现是异常乳腺病变的强烈描述。该项目的长期目标是通过使用最强的CAD/QIA算法(例如3CB)创建诊断成像模型来减少不必要的乳房活检。我们的目标是量化CAD/QIA标记物周围脂质 - 蛋白质 - 水的特征,以更好地预测恶性发现。我们的中心假设是,可以将病变组成与现有的CAD/QIA方法结合使用,以改善癌症诊断的特异性并减少不必要的活检数量。 Our specific aims are as follows: to 1) investigate the sensitivity and specificity of localized 3CB to distinguish breast cancer from benign lesions on prospectively acquired diagnostic mammograms of women recommended to undergo biopsy, 2) compare the sensitivity and specificity of 3CB to an established CAD/QIA method and conventional morphological BI-RADS descriptors, 3) develop a predictive diagnostic model to quantify the probability mammographic发现需要活检与不需要基于临床风险因素,CAD/QIA测量和3CB测量以及次要的活检)研究了使用双能量数字乳房合成的3维3CB特征的优势。每个人的工作假设如下:目标1-存在脂质,蛋白质和水的独特3CB特征,存在用于乳腺癌与良性病变的脂肪,并且可以使用这些信息来更好地识别需要乳房活检目标的病变。措施和已建立的CAD/QIA度量是独立的方法,可以评估乳腺癌和良性病变的不同预测因子,并且单个模型中两种方法的措施的组合将提高单独的次要目标的敏感性和特异性 - 3D乳房摄影将提供比2D成像更准确的病变组成。该研究的创新是两个独立成像风险标记的组合:3CB和强大的CAD/QIA模型,并将其与放射科医生使用的临床标准进行了比较。预期的结果包括1)新颖的3CB和CAD/QIA组合和可访问的技术,将在癌性和良性乳腺X线摄影发现之间提高可见度,2)广泛的,以及有关病变组成与CAD/QIA的相关性与CAD/QIA发现如何相关的生物学相关知识,以及3)基于图像基于图像的预测模型的优化模型。我们期望有重要的积极影响,因为更准确地识别患有和没有乳腺癌的女性将减少不必要的活检的危害。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maryellen L. Giger其他文献
Automating tumor segmentation and tumor enhancement quantification of I-SPY2 data
I-SPY2 数据的自动化肿瘤分割和肿瘤增强量化
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Arden Frantzen;Heather M. Whitney;Hui Li;K. Drukker;A. Edwards;J. Papaioannou;Maryellen L. Giger - 通讯作者:
Maryellen L. Giger
Quantitative analysis of high-plex immunofluorescence microscopy images to investigate the breast cancer tumor microenvironment
定量分析高复数免疫荧光显微镜图像以研究乳腺癌肿瘤微环境
- DOI:
10.1117/12.3027025 - 发表时间:
2024 - 期刊:
- 影响因子:3.1
- 作者:
Madeleine S. Torcasso;Frederick M. Howard;Yuanyuan Zha;Junting Ai;Marcus R. Clark;Maryellen L. Giger - 通讯作者:
Maryellen L. Giger
MIDRC-MetricTree: a decision tree-based tool for recommending performance metrics in artificial intelligence-assisted medical image analysis
MIDRC-MetricTree:基于决策树的工具,用于推荐人工智能辅助医学图像分析中的性能指标
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:2.4
- 作者:
K. Drukker;B. Sahiner;Tingting Hu;G. H. Kim;Heather M. Whitney;Natalie M. Baughan;Kyle J. Myers;Maryellen L. Giger;Michael McNitt - 通讯作者:
Michael McNitt
Computer-aided detection of clustered microcalcifications
计算机辅助检测簇状微钙化
- DOI:
10.1109/icsmc.1992.271592 - 发表时间:
1992 - 期刊:
- 影响因子:0
- 作者:
R. M. Nishikawa;Yulei Jiang;Maryellen L. Giger;Kunio Doi;C. Vyborny;R. A. Schmidt - 通讯作者:
R. A. Schmidt
Multi-class instance segmentation of renal structures in highly multiplexed immunofluorescence microscopy images
高度多重免疫荧光显微镜图像中肾脏结构的多类实例分割
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Thao Cao;Madeleine S. Durkee;Junting Ai;Gabriel Casella;Deepjyoti Ghosh;Anthony Chang;Michael S. Andrade;Maryellen L. Giger;Marcus R. Clark - 通讯作者:
Marcus R. Clark
Maryellen L. Giger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maryellen L. Giger', 18)}}的其他基金
Lesion Composition and Quantitative Imaging Analysis on Breast Cancer Diagnosis
乳腺癌诊断中的病灶构成和定量影像分析
- 批准号:
10674035 - 财政年份:2021
- 资助金额:
$ 6.5万 - 项目类别:
Lesion Composition and Quantitative Imaging Analysis on Breast Cancer Diagnosis
乳腺癌病灶构成及影像学定量分析
- 批准号:
10316696 - 财政年份:2021
- 资助金额:
$ 6.5万 - 项目类别:
Protected Radiomics Analysis Commons for Deep Learning in Biomedical Discovery
生物医学发现中深度学习的受保护放射组学分析共享
- 批准号:
9494294 - 财政年份:2018
- 资助金额:
$ 6.5万 - 项目类别:
Quantitative Image Analysis for Assessing Response to Breast Cancer Therapy
用于评估乳腺癌治疗反应的定量图像分析
- 批准号:
8889341 - 财政年份:2015
- 资助金额:
$ 6.5万 - 项目类别:
Quantitative Image Analysis for Assessing Response to Breast Cancer Therapy
用于评估乳腺癌治疗反应的定量图像分析
- 批准号:
9249507 - 财政年份:2015
- 资助金额:
$ 6.5万 - 项目类别:
Lesion Composition and Quantitative Imaging Analysis on Breast Cancer Diagnosis
乳腺癌诊断中的病灶构成和定量影像分析
- 批准号:
8439678 - 财政年份:2013
- 资助金额:
$ 6.5万 - 项目类别:
Lesion Composition and Quantitative Imaging Analysis on Breast Cancer Diagnosis
乳腺癌诊断中的病灶构成和定量影像分析
- 批准号:
8835068 - 财政年份:2013
- 资助金额:
$ 6.5万 - 项目类别:
Lesion Composition and Quantitative Imaging Analysis on Breast Cancer Diagnosis
乳腺癌诊断中的病灶构成和定量影像分析
- 批准号:
8978083 - 财政年份:2013
- 资助金额:
$ 6.5万 - 项目类别:
相似国自然基金
非光滑Dirac方程的高效数值算法和分析
- 批准号:12371395
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于深度学习模型的等位特异DNA甲基化识别算法开发及分析研究
- 批准号:62301194
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相场模型时空高精度算法的构造与分析
- 批准号:12371396
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
概率约束条件下非线性系统混合最优控制的数值算法设计、分析与应用
- 批准号:62363005
- 批准年份:2023
- 资助金额:32.00 万元
- 项目类别:地区科学基金项目
相似海外基金
Intelligent Optical Probe for Guiding Core Needle Biopsy Procedures
用于引导核心针活检程序的智能光学探头
- 批准号:
10625956 - 财政年份:2022
- 资助金额:
$ 6.5万 - 项目类别:
Low-Cost, Handheld Light Sheet Microscope for Guiding Anal Cancer Diagnosis
用于指导肛门癌诊断的低成本手持式光片显微镜
- 批准号:
10382361 - 财政年份:2021
- 资助金额:
$ 6.5万 - 项目类别:
Noninvasive bladder cancer diagnostics via machine learning analysis of nanoscale surface images of epithelial cells extracted from voided urine samples
通过机器学习分析从排泄尿液样本中提取的上皮细胞的纳米级表面图像进行非侵入性膀胱癌诊断
- 批准号:
10454232 - 财政年份:2021
- 资助金额:
$ 6.5万 - 项目类别:
High resolution transcriptome and gene regulatory mapping of human ureter and bladder across the lifespan
人类输尿管和膀胱整个生命周期的高分辨率转录组和基因调控图谱
- 批准号:
10491331 - 财政年份:2021
- 资助金额:
$ 6.5万 - 项目类别:
Low-Cost, Handheld Light Sheet Microscope for Guiding Anal Cancer Diagnosis
用于指导肛门癌诊断的低成本手持式光片显微镜
- 批准号:
10212560 - 财政年份:2021
- 资助金额:
$ 6.5万 - 项目类别: