Disambiguating coma etiologies by assessing the lability of EEG dynamics

通过评估脑电图动态的不稳定性来消除昏迷病因

基本信息

  • 批准号:
    9321999
  • 负责人:
  • 金额:
    $ 19.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

Project Summary Coma is a state of unconsciousness due to severe brain injury, in which patients are rendered unresponsive to external stimuli. Due to the limitations of current clinical tests in identifying a specific injury or causes associated with coma, devising treatment strategies for coma patients is a persistent clinical challenge. A signature feature of coma is severe disruption of the brain's electrical activity. Thus, the electroencephalogram (EEG), which measures the brain's electrical activity patterns, is routinely used in the neurology and neurosurgery intensive care unit (NNICU) to monitor patients in coma. However, the utility of EEG for diagnosing coma is largely limited to clinicians reading electrical activity in `raw' form as waveform tracings on a monitor. The primary goal of the proposed research is to develop and evaluate new algorithms, derived from engineering theory that will extract information about coma from the EEG that might not be apparent when reading the activity with the naked eye. Consequently, these new methods will enable the automatic EEG-based classification of coma etiology, gradation of injury severity, and prediction of clinical outcome. Eventually, these techniques could potentially be used to help tailor clinical treatment strategies for patients in coma. In this project, we will record EEG data from patients diagnosed with a range of coma etiologies. These data will be assimilated into a biological mathematical model for how the brain produces electrical activity, i.e., the neural dynamics. Enabled by these models, we will use a new type of analysis, called network reachability analysis, which characterizes the different types of electrical activity patterns that the models can produce. As an analogy, an airplane in flight might seem relatively stationary, but the plane's dynamics are actually complex since it could execute many different maneuvers at any time. Our analysis will describe how many `maneuvers' the brain is capable of making, thus providing a dynamical, quantitative characterization of the brain's lability. Our hypothesis is that different types of coma will exhibit different lability. To test this hypothesis, and to explore its clinical utility, we will apply network reachability analysis to the recordings we will obtain from patients with coma. Through this analysis, we will construct quantitative biomarkers that could be integrated into a new type of EEG monitor tailored for coma and other related disorders. Thus, the outcomes of this project will have significant and immediate impact on neurocritical care by facilitating more precise quantitative analysis of the neural dynamics of coma. More generally, the development of these techniques might shed new light on the mechanisms that underlie pathological states of unconsciousness, as well as normal sleep and wakefulness.
项目摘要 昏迷是由于严重的脑损伤而导致的一种无意识状态,在这种状态下,患者对 外部刺激。由于目前临床测试在确定特定损伤或相关原因方面的局限性 对于昏迷,为昏迷患者设计治疗策略是一个持久的临床挑战。 昏迷的一个显著特征是大脑的电活动严重中断。因此,脑电波 脑电(EEG)测量大脑的电活动模式,通常用于神经学和 神经外科重症监护病房(NNICU),用于监测昏迷患者。然而,脑电在诊断中的作用 昏迷在很大程度上仅限于临床医生将电活动以“原始”形式读取为监视器上的波形轨迹。 拟议研究的主要目标是开发和评估源自工程的新算法。 从脑电中提取昏迷信息的理论,这些信息在阅读活动时可能并不明显 用肉眼看。因此,这些新方法将使基于脑电的自动分类成为可能 昏迷病因学、损伤严重程度分级和临床结果预测。最终,这些技术可以 可能被用于帮助昏迷患者量身定做临床治疗策略。 在这个项目中,我们将记录被诊断为一系列昏迷原因的患者的脑电数据。这些数据 将被同化为一个关于大脑如何产生电活动的生物数学模型,即 神经动力学。在这些模型的支持下,我们将使用一种新类型的分析,称为网络可达性 分析,它描述了模型可以产生的不同类型的电活动模式。AS 打个比方,飞行中的飞机可能看起来相对静止,但飞机的动力学实际上是复杂的 因为它可以在任何时候执行许多不同的动作。我们的分析将描述有多少次‘演习’ 大脑能够制造,因此提供了大脑不稳定的动态、定量的特征。 我们的假设是,不同类型的昏迷会表现出不同的稳定性。来检验这一假设,并探索 它的临床用途,我们将应用网络可达性分析,我们将从患者那里获得的录音 昏迷。通过这种分析,我们将构建可以整合成一种新类型的定量生物标记物 为昏迷和其他相关疾病量身定做的脑电监护仪。 因此,该项目的成果将对神经危重护理产生重大和直接的影响 更准确地定量分析昏迷的神经动力学。更广泛地说,这些技术的发展 技术可能会对潜意识的病理状态背后的机制提供新的线索,如 以及正常的睡眠和清醒。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Identifying Disruptions in Intrinsic Brain Dynamics due to Severe Brain Injury.
识别严重脑损伤导致的大脑内在动力学破坏。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ShiNung Ching其他文献

ShiNung Ching的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ShiNung Ching', 18)}}的其他基金

SCH: Tracking Individual Brain State Trajectories: Methods and Applications in Precision Neurocritical Care
SCH:跟踪个体大脑状态轨迹:精准神经重症监护的方法和应用
  • 批准号:
    10674922
  • 财政年份:
    2022
  • 资助金额:
    $ 19.06万
  • 项目类别:
SCH: Tracking Individual Brain State Trajectories: Methods and Applications in Precision Neurocritical Care
SCH:跟踪个体大脑状态轨迹:精准神经重症监护的方法和应用
  • 批准号:
    10599608
  • 财政年份:
    2022
  • 资助金额:
    $ 19.06万
  • 项目类别:
Spatiotemporal control of large neuronal networks using high dimensional optimization
使用高维优化对大型神经元网络进行时空控制
  • 批准号:
    9356504
  • 财政年份:
    2016
  • 资助金额:
    $ 19.06万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 19.06万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 19.06万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 19.06万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 19.06万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 19.06万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 19.06万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 19.06万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 19.06万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 19.06万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.06万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了