Disambiguating coma etiologies by assessing the lability of EEG dynamics
通过评估脑电图动态的不稳定性来消除昏迷病因
基本信息
- 批准号:9321999
- 负责人:
- 金额:$ 19.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAlgorithmsArousalBehaviorBehavioral AssayBiologicalBiological AssayBiological MarkersBiophysicsBrainBrain DeathBrain InjuriesCaringClassificationClinicalClinical ResearchClinical TreatmentComaComplexDataDetectionDevelopmentDiagnosisDiagnosticDiffuseDiffuse Brain InjuryDiseaseEconomicsElectroencephalogramEngineeringEtiologyExhibitsEyeFrequenciesGoalsHospitalsIndividualInjuryIntensive CareIntensive Care UnitsLeadLightMeasuresMethodologyMethodsMinimally Conscious StatesModelingMonitorNeurologicNeurologyNeuronsOutcomeOutputPathologicPathologyPatient MonitoringPatient-Focused OutcomesPatientsPatternPositioning AttributeProspective StudiesReadingRecoveryResearchResidual stateResolutionRetrospective StudiesSeizuresSeveritiesSignal TransductionSleepStimulusSystems TheoryTechniquesTechnologyTestingTimeTime Series AnalysisTreatment outcomeUnconscious StateVariantWakefulnessbasebehavioral impairmentbehavioral outcomebrain electrical activitycohortdesigndiagnostic biomarkerdisabilitydynamic systemfollower of religion Jewishimaging studyimprovedinnovationinsightinterestmathematical modelneural circuitneuronal circuitryneurosurgerynovelnovel diagnosticsoutcome forecastpoint of carepredict clinical outcomepredictive markerprognosticprospectivepublic health relevancerelating to nervous systemsignal processingtechnique developmenttheoriestooltreatment strategy
项目摘要
Project Summary
Coma is a state of unconsciousness due to severe brain injury, in which patients are rendered unresponsive to
external stimuli. Due to the limitations of current clinical tests in identifying a specific injury or causes associated
with coma, devising treatment strategies for coma patients is a persistent clinical challenge.
A signature feature of coma is severe disruption of the brain's electrical activity. Thus, the electroencephalogram
(EEG), which measures the brain's electrical activity patterns, is routinely used in the neurology and
neurosurgery intensive care unit (NNICU) to monitor patients in coma. However, the utility of EEG for diagnosing
coma is largely limited to clinicians reading electrical activity in `raw' form as waveform tracings on a monitor.
The primary goal of the proposed research is to develop and evaluate new algorithms, derived from engineering
theory that will extract information about coma from the EEG that might not be apparent when reading the activity
with the naked eye. Consequently, these new methods will enable the automatic EEG-based classification of
coma etiology, gradation of injury severity, and prediction of clinical outcome. Eventually, these techniques could
potentially be used to help tailor clinical treatment strategies for patients in coma.
In this project, we will record EEG data from patients diagnosed with a range of coma etiologies. These data
will be assimilated into a biological mathematical model for how the brain produces electrical activity, i.e., the
neural dynamics. Enabled by these models, we will use a new type of analysis, called network reachability
analysis, which characterizes the different types of electrical activity patterns that the models can produce. As
an analogy, an airplane in flight might seem relatively stationary, but the plane's dynamics are actually complex
since it could execute many different maneuvers at any time. Our analysis will describe how many `maneuvers'
the brain is capable of making, thus providing a dynamical, quantitative characterization of the brain's lability.
Our hypothesis is that different types of coma will exhibit different lability. To test this hypothesis, and to explore
its clinical utility, we will apply network reachability analysis to the recordings we will obtain from patients with
coma. Through this analysis, we will construct quantitative biomarkers that could be integrated into a new type
of EEG monitor tailored for coma and other related disorders.
Thus, the outcomes of this project will have significant and immediate impact on neurocritical care by facilitating
more precise quantitative analysis of the neural dynamics of coma. More generally, the development of these
techniques might shed new light on the mechanisms that underlie pathological states of unconsciousness, as
well as normal sleep and wakefulness.
项目总结
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Identifying Disruptions in Intrinsic Brain Dynamics due to Severe Brain Injury.
识别严重脑损伤导致的大脑内在动力学破坏。
- DOI:10.1109/acssc.2017.8335197
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Khanmohammadi,Sina;Kummer,TerranceT;Ching,ShiNung
- 通讯作者:Ching,ShiNung
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ShiNung Ching其他文献
ShiNung Ching的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ShiNung Ching', 18)}}的其他基金
SCH: Tracking Individual Brain State Trajectories: Methods and Applications in Precision Neurocritical Care
SCH:跟踪个体大脑状态轨迹:精准神经重症监护的方法和应用
- 批准号:
10674922 - 财政年份:2022
- 资助金额:
$ 19.06万 - 项目类别:
SCH: Tracking Individual Brain State Trajectories: Methods and Applications in Precision Neurocritical Care
SCH:跟踪个体大脑状态轨迹:精准神经重症监护的方法和应用
- 批准号:
10599608 - 财政年份:2022
- 资助金额:
$ 19.06万 - 项目类别:
Spatiotemporal control of large neuronal networks using high dimensional optimization
使用高维优化对大型神经元网络进行时空控制
- 批准号:
9356504 - 财政年份:2016
- 资助金额:
$ 19.06万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 19.06万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 19.06万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 19.06万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 19.06万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 19.06万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 19.06万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 19.06万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 19.06万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 19.06万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 19.06万 - 项目类别:
Research Grant














{{item.name}}会员




