Analysis of the Molecular Machinery of microRNA-processing pathways
microRNA 加工途径的分子机械分析
基本信息
- 批准号:9257451
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-08 至 2019-03-31
- 项目状态:已结题
- 来源:
- 关键词:5&apos-exoribonucleaseAddressAffectAllelesAnimal ModelAnimalsAwardBiochemicalBiochemistryBiogenesisBiologyBypassCellsDataDefectDevelopmentDiseaseEmbryoEmbryonic DevelopmentEnzymesErythrocytesExonucleaseFamily memberFishesGene ExpressionGenesGeneticGenetic TranscriptionGlioblastomaGoalsHematological DiseaseHematopoieticHumanHuman DevelopmentIntronsKnowledgeLeadLengthLinkMalignant NeoplasmsMammalian CellMass Spectrum AnalysisMaternal Messenger RNAMediatingMentorsMessenger RNAMetabolicMethodsMicroRNAsModificationMolecularMolecular AnalysisNucleotidesPathway interactionsPhasePhenotypePhosphodiesterase IPlayPopulationProcessProductionProteinsRNA ProcessingRegulationRegulator GenesReportingResearchRibonuclease IIIRoleSignal TransductionSiteSmall Nucleolar RNASmall RNAStructureTailTechniquesTestingTherapeuticTherapeutic InterventionTissuesTransfer RNATransferaseTranslationsUntranslated RNAVertebratesWorkZebrafishcell typecrosslinkdevelopmental diseaseexperimental studygenome-widegenome-wide analysishuman diseasein vivoinnovationinsightknock-downloss of functionmutantnovelstemtumoruridylate
项目摘要
microRNAs (miRNAs) are 22 nucleotide small non-coding RNAs that regulate translation, deadenylation
and decay of their target mRNAs. miRNAs have recently taken central stage in biology due to their
fundamental roles in animal development, human disease and cancer.
Typically, two RNase III family members, Drosha and Dicer, process the stem-loop structure of miRNA
precursors sequentially. My recent work has uncovered a novel processing pathway where miRNA maturation
skips the Dicer step and instead enters into an alternative Ago2-dependent pathway. This finding challenges a
long-held assumption that Dicer is essential for miRNA maturation. However, Ago2-mediated cleavage is just
the initial step of this novel pathway and little is known about the molecular machinery and the mechanisms
underlying the final steps of miRNA maturation. My preliminary results suggest that after Ago2-mediated
cleavage, miR-451 is uridylated and processed to its mature form by exonucleolytic trimming, a mechanism
that has recently been reported as a widespread method to refine mature miRNA length. Whether the trimming
and uridylation machinery is common to both the canonical and Ago2-dependent miRNA processing pathways
is a question that I will explore in this project.
To uncover the miRNA trimming (Aim 1) and uridylation machinery (Aim 2), during the mentored phase of
the award I will focus on the analysis of miR-451 processing because processing of this Ago2-dependent
miRNA requires pervasive uridylation and extensive trimming. Moreover, miR-451 is conserved across
vertebrates and plays an essential role both in erythrocyte maturation and in metabolic regulation of
glioblastoma tumors making the results of this project relevant for human therapeutics.
Later, in the independent period of the award I will capitalize on the discovery of the uridylation and
trimming machinery to analyze their role not only in Ago2-dependent miRNA production but also in canonical
small RNA biogenesis and turnover during vertebrate development (Aim 3). The use zebrafish embryos will be
crucial to perform these analyses in a genome-wide manner. The use of the zebrafish model organism
removes the restrictions of using single tissue or cell types, which have limited repertoire of small RNAs. To
accomplish all of these objectives I will combine biochemistry, mass spectrometry, genetics and highthroughput
sequencing.
The experiments in this proposal will identify an evolutionarily conserved machinery to process small
regulatory RNAs in vertebrates. The results derived form this project will be instrumental to understand how
pervasive modifications of the 3’-end by tailing and trimming affects miRNA-target selection in vivo during early
embryogenesis. miRNAs play a key role during early embryogenesis clearing maternal mRNAs and
mechanisms controlling miRNA turnover will have a direct impact in embryonic development. Furthermore,
given the relevance of trimming in miR-451 processing, the discovery of the underlying machinery will
potentially set the framework for therapeutic intervention in human hematopoietic disorders and cancer.
microRNAs(miRNAs)是一类由22个核苷酸组成的小分子非编码RNA,它们调节翻译、去腺苷化、
和它们的靶mRNA的衰变。最近,由于它们的功能,miRNA在生物学中占据了中心地位。
在动物发育、人类疾病和癌症中的重要作用。
通常,两个RNase III家族成员,Drosha和Dicer,处理miRNA的茎环结构
前体顺序我最近的工作揭示了一种新的加工途径,
跳过Dicer步骤,而是进入替代的Ago 2依赖性途径。这一发现挑战了
Dicer对miRNA成熟至关重要。然而,Ago 2介导的切割只是
这一新途径的初始步骤,而对分子机制和机制知之甚少
这是miRNA成熟的最后一步。我的初步结果表明,在Ago 2介导的
切割后,miR-451被尿苷化并通过核酸外切酶切加工成其成熟形式,这是一种机制
这是最近报道的一种广泛使用的细化成熟miRNA长度的方法。无论是修剪
尿苷酸化机制在经典和Ago 2依赖的miRNA加工途径中是共同的
这是我在这个项目中要探讨的问题。
为了揭示miRNA修剪(Aim 1)和尿苷化机制(Aim 2),在指导阶段,
该奖项我将重点分析miR-451的加工,因为这种Ago 2依赖的加工
miRNA需要普遍的尿苷化和广泛的修剪。此外,miR-451在整个细胞中是保守的。
在脊椎动物中,在红细胞成熟和代谢调节中起重要作用。
胶质母细胞瘤肿瘤使得该项目的结果与人类治疗相关。
后来,在该奖项的独立期间,我将利用尿苷化的发现,
修剪机器,以分析它们不仅在Ago 2依赖性miRNA产生中的作用,而且在典型的
脊椎动物发育过程中小RNA的生物合成和周转(Aim 3)。利用斑马鱼胚胎将
关键是以全基因组的方式进行这些分析。斑马鱼模式生物的应用
消除了使用单一组织或细胞类型的限制,这些组织或细胞类型具有有限的小RNA库。到
为了实现所有这些目标,我将联合收割机结合生物化学,质谱,遗传学和高通量
测序
该提案中的实验将确定一种进化上保守的机制来处理小分子物质
在脊椎动物中的调节RNA。从这个项目得出的结果将有助于了解如何
通过加尾和修剪对3 '末端的普遍修饰影响早期miRNA的体内靶选择,
胚胎发生miRNAs在早期胚胎发生过程中起关键作用,清除母体mRNAs,
控制miRNA周转的机制将对胚胎发育产生直接影响。此外,委员会还认为,
考虑到修剪在miR-451加工中的相关性,潜在机制的发现将
可能为人类造血系统疾病和癌症的治疗干预建立框架。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Cifuentes其他文献
Daniel Cifuentes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Cifuentes', 18)}}的其他基金
Analysis of non-canonical functions of microRNAs
microRNA的非典型功能分析
- 批准号:
10799098 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Developing a high-throughput method to validate microRNA biogenesis in vivo.
开发一种高通量方法来验证 microRNA 体内生物发生。
- 批准号:
10210415 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
Developing a high-throughput method to validate microRNA biogenesis in vivo.
开发一种高通量方法来验证 microRNA 体内生物发生。
- 批准号:
10043005 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
Analysis of non-canonical functions of microRNAs
microRNA的非典型功能分析
- 批准号:
10563155 - 财政年份:2019
- 资助金额:
$ 24.9万 - 项目类别:
Analysis of non-canonical functions of microRNAs
microRNA的非典型功能分析
- 批准号:
10582107 - 财政年份:2019
- 资助金额:
$ 24.9万 - 项目类别:
Analysis of non-canonical functions of microRNAs
microRNA的非典型功能分析
- 批准号:
10358511 - 财政年份:2019
- 资助金额:
$ 24.9万 - 项目类别:
Analysis of the Molecular Machinery of microRNA-processing pathways
microRNA 加工途径的分子机械分析
- 批准号:
8442460 - 财政年份:2013
- 资助金额:
$ 24.9万 - 项目类别:
Analysis of the Molecular Machinery of microRNA-processing pathways
microRNA 加工途径的分子机械分析
- 批准号:
8698432 - 财政年份:2013
- 资助金额:
$ 24.9万 - 项目类别:
相似海外基金
Mechanistic insights into multifaceted roles of coronavirus exoribonuclease complex
冠状病毒外核糖核酸酶复合物多方面作用的机制见解
- 批准号:
10713523 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Novel Function(s) of Arenavirus NP Exoribonuclease
Arenavirus NP 核糖核酸外切酶的新功能
- 批准号:
10525101 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Novel Function(s) of Arenavirus NP Exoribonuclease
Arenavirus NP 核糖核酸外切酶的新功能
- 批准号:
10624457 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Characterizing the XRN1 exoribonuclease as a therapeutic target in non-small cell lung cancer
将 XRN1 核糖核酸外切酶表征为非小细胞肺癌的治疗靶点
- 批准号:
10215766 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Exploring the Coronavirus Exoribonuclease as an Antiviral Target
探索冠状病毒外核糖核酸酶作为抗病毒靶点
- 批准号:
10238324 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Characterizing the XRN1 exoribonuclease as a therapeutic target in non-small cell lung cancer
将 XRN1 核糖核酸外切酶表征为非小细胞肺癌的治疗靶点
- 批准号:
10656174 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Characterizing the XRN1 exoribonuclease as a therapeutic target in non-small cell lung cancer
将 XRN1 核糖核酸外切酶表征为非小细胞肺癌的治疗靶点
- 批准号:
10370384 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Exploiting the SARS-CoV-2 nsp14 3'-5'-exoribonuclease as a target for antiviral chemotherapy
利用 SARS-CoV-2 nsp14 3-5-核糖核酸外切酶作为抗病毒化疗的靶点
- 批准号:
MR/V036904/1 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
Dissecting the role of the coronavirus proofreading exoribonuclease in RNA recombination
剖析冠状病毒校对核糖核酸酶在 RNA 重组中的作用
- 批准号:
10268982 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
Flow responsive endothelial Pnpt1: an exoribonuclease that regulates mitochondrial function and vascular disease
流量响应内皮 Pnpt1:一种调节线粒体功能和血管疾病的核糖核酸外切酶
- 批准号:
9750410 - 财政年份:2018
- 资助金额:
$ 24.9万 - 项目类别: