Comparative analysis and regulatory architecture of epigenomics datasets
表观基因组数据集的比较分析和监管架构
基本信息
- 批准号:9253408
- 负责人:
- 金额:$ 28.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2018-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsArchitectureCellsChromatinChromosomesClassificationCollectionCommunitiesComplexComputer AnalysisCorrelation StudiesDNA MethylationDNA SequenceData SetDevelopmentDimensionsDiseaseEnhancersGene ExpressionGene Expression ProfileGene Expression RegulationGene TargetingGenesGenetic studyGenomicsGraphHealthHigher Order Chromatin StructureHumanHuman GenomeHypersensitivityIndividualLearningLinkMachine LearningMalignant NeoplasmsMapsMethodologyMethodsMolecular ConformationMutationNucleic Acid Regulatory SequencesNucleosomesPathway interactionsPatternPhylogenetic AnalysisQuantitative Trait LociRegulatory ElementResourcesSomatic MutationStatistical MethodsSupervisionTissuesTrainingUnited States National Institutes of HealthUntranslated RNAVariantbasecell typecomparativecomparison groupdifferential expressionepigenomeepigenomicsexperienceexperimental studyfollow-upgenetic associationgenome wide association studyhistone modificationhuman diseaseinnovationinsightlearning strategynovelnovel strategiespredictive modelingpublic health relevancerare varianttoolward
项目摘要
DESCRIPTION (provided by applicant): The NIH Roadmap Epigenomics and ENCODE projects have generated a collection of 3000+ epigenomics datasets, including histone modification, DNA methylation, gene expression, and DNaseI hypersensitivity profiled across 190 cell and tissue types. In order to maximize its impact on gene regulation, cellular differentiation, and human health, novel computational analyses are needed. To address this challenge, we will develop new methods for epigenomic analysis, building on our extensive experience interpreting epigenomic information, and our preliminary studies building chromatin states, activity clusters, and regulatory motif maps for the Roadmap Epigenomics and ENCODE datasets. In Aim 1, we will characterize epigenomic differences and changes during lineage differentiation by developing new tools for systematic comparison of groups of epigenomes that directly exploit the complexity of epigenomic datasets; we will also develop methods for clustering epigenomes into developmental lineages based on automatically-learned diverse epigenomic features that distinguish them; and methods that learn the unidirectional epigenomic changes that pluripotent cells undergo during lineage commitment to gain more insights into differentiation and automatically learn to classify lineages and differentiation trajectories. In Am 2, we will seek to characterize higher-order chromatin architecture and chromatin conformation to enable systematic interpretation of cis-regulatory modules: we will develop a novel statistical approach for enhancer-enhancer and enhancer-gene linking to reveal interacting regions and their target genes based on their coordinated activity patterns across cell and tissue types; we will train a supervised learning method for predicting both constitutive and tissue-specific chromatin conformation information based on chromatin state information, individual chromatin marks, genomic distance, activity, regulatory motif information, and DNA sequence; and we will use these higher-order interaction maps to predict gene expression levels based on the combined action of multiple regulatory regions and to define the cis-regulatory architecture of each gene in the human genome. The resulting resources will be invaluable for studies of gene regulation, by revealing the set of regulatory elements that are linked to each gene, and for the interpretation of genetic studies, by revealing the set of regulatory elements which jointly act to
regulate each target gene and the potential target genes of non-coding variants associated with human disease.
描述(由申请人提供):NIH Roadmap表观基因组学和ENCODE项目已经生成了3000多个表观基因组学数据集,包括190种细胞和组织类型的组蛋白修饰、DNA甲基化、基因表达和DNaseI超敏反应。为了最大限度地发挥其对基因调控,细胞分化和人类健康的影响,需要新的计算分析。为了应对这一挑战,我们将开发新的表观基因组分析方法,建立在我们解释表观基因组信息的丰富经验,以及我们为Roadmap表观基因组学和ENCODE数据集构建染色质状态,活性簇和调控基序图的初步研究基础上。在目标1中,我们将通过开发新的工具来描述谱系分化过程中的表观基因组差异和变化,这些工具用于直接利用表观基因组数据集的复杂性的表观基因组的系统比较;我们还将开发基于自动学习的不同表观基因组特征将表观基因组聚类到发育谱系中的方法。以及学习多能细胞在谱系定型期间经历的单向表观基因组变化以获得对分化的更多了解并自动学习对谱系和分化轨迹进行分类的方法。在Am 2中,我们将寻求表征高阶染色质结构和染色质构象,以系统地解释顺式调控模块:我们将开发一种新的增强子-增强子和增强子-基因连接的统计方法,以揭示相互作用区域及其靶基因,基于它们在细胞和组织类型中的协调活性模式;我们将训练一种监督学习方法,用于基于染色质状态信息、个体染色质标记、基因组距离、活性、调控基序信息和DNA序列来预测组成性和组织特异性染色质构象信息;我们将使用这些高阶相互作用图谱来预测基于多个调控区域的联合作用的基因表达水平,并定义人类基因组中每个基因的顺式调控结构。由此产生的资源将是非常宝贵的基因调控的研究,揭示了一套调控元件,是连接到每个基因,并为遗传研究的解释,揭示了一套调控元件,共同作用,
调节每个靶基因和与人类疾病相关的非编码变体的潜在靶基因。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Manolis Kellis其他文献
Manolis Kellis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Manolis Kellis', 18)}}的其他基金
Investigating cell-type specific convergence of APOE and ABCA7 lipid dysregulation in Alzheimer’s disease
研究阿尔茨海默病中 APOE 和 ABCA7 脂质失调的细胞类型特异性趋同
- 批准号:
10900993 - 财政年份:2023
- 资助金额:
$ 28.5万 - 项目类别:
Single-cell multi-region dissection of AD-pathogen interactions for HSV-1 and CMV
HSV-1 和 CMV AD 病原体相互作用的单细胞多区域解剖
- 批准号:
10607814 - 财政年份:2023
- 资助金额:
$ 28.5万 - 项目类别:
Single-cell epigenomic and trancriptional dissection of sex-specific differences in Alzheimer’s Disease
阿尔茨海默病性别特异性差异的单细胞表观基因组和转录解析
- 批准号:
10495202 - 财政年份:2021
- 资助金额:
$ 28.5万 - 项目类别:
Single-cell epigenomic and trancriptional dissection of sex-specific differences in Alzheimer’s Disease
阿尔茨海默病性别特异性差异的单细胞表观基因组和转录解析
- 批准号:
10300867 - 财政年份:2021
- 资助金额:
$ 28.5万 - 项目类别:
Single-cell epigenomic and trancriptional dissection of sex-specific differences in Alzheimer’s Disease
阿尔茨海默病性别特异性差异的单细胞表观基因组和转录解析
- 批准号:
10633255 - 财政年份:2021
- 资助金额:
$ 28.5万 - 项目类别:
Single-cell transcriptional and epigenomic dissection of Alzheimer's Disease and Related Dementias
阿尔茨海默病和相关痴呆症的单细胞转录和表观基因组解剖
- 批准号:
10011923 - 财政年份:2018
- 资助金额:
$ 28.5万 - 项目类别:
Single-cell transcriptional and epigenomic dissection of Alzheimer's Disease and Related Dementias
阿尔茨海默病和相关痴呆症的单细胞转录和表观基因组解剖
- 批准号:
9791035 - 财政年份:2018
- 资助金额:
$ 28.5万 - 项目类别:
Elucidating the Molecular Mechanisms of Neuropsychiatric Symptoms in Alzheimer's Disease
阐明阿尔茨海默病神经精神症状的分子机制
- 批准号:
10451516 - 财政年份:2018
- 资助金额:
$ 28.5万 - 项目类别:
Elucidating the Molecular Mechanisms of Neuropsychiatric Symptoms in Alzheimer's Disease
阐明阿尔茨海默病神经精神症状的分子机制
- 批准号:
10177837 - 财政年份:2018
- 资助金额:
$ 28.5万 - 项目类别:
Interpreting non-coding variants using epigenomics, regulatory models, & validation experiments
使用表观基因组学、调控模型解释非编码变异,
- 批准号:
9616350 - 财政年份:2017
- 资助金额:
$ 28.5万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221742 - 财政年份:2022
- 资助金额:
$ 28.5万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221741 - 财政年份:2022
- 资助金额:
$ 28.5万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2020
- 资助金额:
$ 28.5万 - 项目类别:
Collaborative Research and Development Grants
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
- 批准号:
2008772 - 财政年份:2020
- 资助金额:
$ 28.5万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2019
- 资助金额:
$ 28.5万 - 项目类别:
Collaborative Research and Development Grants
Visualization of FPGA CAD Algorithms and Target Architecture
FPGA CAD 算法和目标架构的可视化
- 批准号:
541812-2019 - 财政年份:2019
- 资助金额:
$ 28.5万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759836 - 财政年份:2018
- 资助金额:
$ 28.5万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759796 - 财政年份:2018
- 资助金额:
$ 28.5万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759807 - 财政年份:2018
- 资助金额:
$ 28.5万 - 项目类别:
Standard Grant