Improving Cancer Treatment Planning by DMH-Based Inverse Optimization

通过基于 DMH 的逆优化改进癌症治疗计划

基本信息

项目摘要

DESCRIPTION (provided by applicant): Cancer patients continue to represent a challenging disease population, which faces rather poor prognosis with current treatment planning and delivery practices. Venues for a potential dose escalation and/or increased healthy tissue sparing, through innovative therapeutic approaches for those patients, are clearly needed. Current state of the art radiotherapy treatment planning relies on the dose-volume-histogram (DVH) paradigm, where doses to fractional (most often) or absolute volumes of anatomical structures are employed in both optimization and plan evaluation process. It has been argued however, that the effects of delivered dose seem to be more closely related to healthy tissue toxicity (and thereby to clinical outcomes) when dose-mass- histograms (DMHs) are considered in treatment plan evaluation. We propose the incorporation of mass and density information explicitly into the cost functions of the inverse optimization process, thereby shifting from DVH t DMH treatment planning paradigm. This novel DMH-based intensity modulated radiotherapy (IMRT) optimization aims in minimization of radiation doses to a certain mass, rather than a volume, of healthy tissue. Our working hypothesis is that DMH- optimization will reduce doses to healthy tissue substantially. In certain cases, with extensive, difficult to treat disease, lower doses to healthy tissue can be used for isotoxic dose escalation, which may result in an approximately two-fold increase in estimated loco-regional tumor control probability. To test this hypothesis we will pursue the following specific aims: (1) Develop the theoretical and computational framework of the DMH-based IMRT optimization. This framework will incorporate 3D and 4D IMRT as well as 3D volumetric modulated arc (VMAT) planning for different anatomical sites. (2) Investigate different parametric forms for DMH-optimization functions. The ultimate goal would be the simultaneous minimization of healthy tissue doses and/or escalation of therapeutic doses, without violating the established dosimetric tolerances for healthy anatomical structures. And (3) Practical implementation and application of this novel optimization paradigm, where virtual clinical trials for cohorts of lung, head-and-neck, and prostate cancer cases will be performed. Statistical significance of the DMH-optimization dosimetric improvements over standard of care DVH-optimization will be quantified. Prospective 3D and 4D CT data collection will be used to study the interactions between tumor time-trending changes and DMH-based optimization results. 4D CT data will also be used to investigate and quantify the correlation between DMH-based end points and the loss of pulmonary function during and after radiotherapy treatment. The deliverability (with the existing radiotherapy treatment equipment) of our 3D VMAT and 3D/4D IMRT plans will be experimentally verified, thereby paving the road for initiation of clinical trials.
描述(由申请人提供):癌症患者仍然是一个具有挑战性的疾病人群,他们在当前的治疗计划和实施实践中面临着相当差的预后。显然需要通过针对这些患者的创新治疗方法来增加潜在的剂量和/或增加健康组织的保护。当前最先进的放射治疗计划依赖于剂量体积直方图(DVH)范式,其中在优化和计划评估过程中均采用解剖结构的分数(最常见)或绝对体积的剂量。然而,有人认为,当在治疗计划评估中考虑剂量质量直方图(DMH)时,输送剂量的影响似乎与健康组织毒性(从而与临床结果)更密切相关。我们建议将质量和密度信息明确地纳入逆优化过程的成本函数中,从而从 DVH t DMH 治疗计划范式转变。这种基于 DMH 的新型调强放射治疗 (IMRT) 优化旨在最大限度地减少健康组织一定质量而非一定体积的辐射剂量。我们的工作假设是 DMH 优化将大大减少健康组织的剂量。在某些情况下,对于广泛的、难以治疗的疾病,可以对健康组织使用较低剂量来进行等毒性剂量递增,这可能导致估计的局部肿瘤控制概率增加大约两倍。为了检验这一假设,我们将追求以下具体目标:(1)开发基于 DMH 的 IMRT 优化的理论和计算框架。该框架将结合 3D 和 4D IMRT 以及针对不同解剖部位的 3D 体积调制弧 (VMAT) 规划。 (2) 研究 DMH 优化函数的不同参数形式。最终目标是同时最小化健康组织剂量和/或增加治疗剂量,而不违反健康解剖结构既定的剂量耐受性。 (3) 这种新颖的优化范例的实际实施和应用,其中将对肺癌、头颈癌和前列腺癌病例组进行虚拟临床试验。 DMH 优化剂量测定相对于护理标准 DVH 优化的改善的统计显着性将被量化。前瞻性 3D 和 4D CT 数据收集将用于研究肿瘤时间趋势变化与基于 DMH 的优化结果之间的相互作用。 4D CT 数据还将用于调查和量化基于 DMH 的终点与放疗期间和之后肺功能丧失之间的相关性。我们的3D VMAT和3D/4D IMRT计划的可交付性(使用现有的放射治疗设备)将通过实验验证,从而为临床试验的启动铺平道路。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SU-E-T-553: Dose-Mass Vs. Dose-Volume Optimization: A Phantom Study.
SU-E-T-553:剂量-质量与。
  • DOI:
    10.1118/1.4735642
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Mihaylov,I;Moros,E;Siebers,J
  • 通讯作者:
    Siebers,J
Mathematical Formulation of DMH-Based Inverse Optimization.
基于 DMH 的逆优化的数学公式。
  • DOI:
    10.3389/fonc.2014.00331
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Mihaylov,IvayloB;Moros,EduardoG
  • 通讯作者:
    Moros,EduardoG
New approach in lung cancer radiotherapy offers better normal tissue sparing.
肺癌放射治疗的新方法可以更好地保护正常组织。
Automated inverse optimization facilitates lower doses to normal tissue in pancreatic stereotactic body radiotherapy.
自动化的逆优化促进了胰腺立体定位放射疗法中对正常组织的较低剂量。
  • DOI:
    10.1371/journal.pone.0191036
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Mihaylov IB;Mellon EA;Yechieli R;Portelance L
  • 通讯作者:
    Portelance L
TH-C-137-12: Comparison of Dose-Volume and Dose-Mass Inverse Optimization in NSCLC.
TH-C-137-12:NSCLC 中剂量-体积和剂量-质量逆优化的比较。
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Mihaylov,I;Moros,E
  • 通讯作者:
    Moros,E
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ivaylo B Mihaylov其他文献

Ivaylo B Mihaylov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ivaylo B Mihaylov', 18)}}的其他基金

Improving Cancer Treatment Planning by DMH-Based Inverse Optimization
通过基于 DMH 的逆优化改进癌症治疗计划
  • 批准号:
    8371942
  • 财政年份:
    2012
  • 资助金额:
    $ 31.85万
  • 项目类别:
Improving Cancer Treatment Planning by DMH-Based Inverse Optimization
通过基于 DMH 的逆优化改进癌症治疗计划
  • 批准号:
    8507634
  • 财政年份:
    2012
  • 资助金额:
    $ 31.85万
  • 项目类别:
Improving Cancer Treatment Planning by DMH-Based Inverse Optimization
通过基于 DMH 的逆优化改进癌症治疗计划
  • 批准号:
    8734251
  • 财政年份:
    2012
  • 资助金额:
    $ 31.85万
  • 项目类别:
Improving Cancer Treatment Planning by DMH-Based Inverse Optimization
通过基于 DMH 的逆优化改进癌症治疗计划
  • 批准号:
    8890121
  • 财政年份:
    2012
  • 资助金额:
    $ 31.85万
  • 项目类别:

相似海外基金

Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
  • 批准号:
    EP/Z000882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.85万
  • 项目类别:
    Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
  • 批准号:
    BB/Y513908/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.85万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
  • 批准号:
    2235348
  • 财政年份:
    2023
  • 资助金额:
    $ 31.85万
  • 项目类别:
    Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
  • 批准号:
    23K11917
  • 财政年份:
    2023
  • 资助金额:
    $ 31.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
  • 批准号:
    BB/X013227/1
  • 财政年份:
    2023
  • 资助金额:
    $ 31.85万
  • 项目类别:
    Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
  • 批准号:
    2825967
  • 财政年份:
    2023
  • 资助金额:
    $ 31.85万
  • 项目类别:
    Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
  • 批准号:
    10555809
  • 财政年份:
    2023
  • 资助金额:
    $ 31.85万
  • 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
  • 批准号:
    10761060
  • 财政年份:
    2023
  • 资助金额:
    $ 31.85万
  • 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
  • 批准号:
    10751126
  • 财政年份:
    2023
  • 资助金额:
    $ 31.85万
  • 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
  • 批准号:
    2872725
  • 财政年份:
    2023
  • 资助金额:
    $ 31.85万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了