The Roles of the Dynamin-Related Protein Vps1 and the ESCRT Complex in Microautophagy
动力相关蛋白 Vps1 和 ESCRT 复合物在微自噬中的作用
基本信息
- 批准号:9354500
- 负责人:
- 金额:$ 29.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-20 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAntifungal AgentsAntineoplastic AgentsAutophagocytosisBiochemicalBiologyBiophysicsCell SurvivalCell physiologyCellsCellular MembraneCellular biologyComplexCytokinesisCytologyDataDefectDevelopmentDiseaseDynaminEmbryonic DevelopmentEukaryotaEukaryotic CellGeneticGoalsGrowthGrowth and Development functionHealthHomeostasisHumanLengthLightLinkLipid BindingLongevityMalignant NeoplasmsMammalian CellMapsMembraneMissionMitochondriaModelingMolecularMultivesicular BodyNeurodegenerative DisordersNutrientOrganellesPathologicPathologyPathway interactionsPlayPost-Translational Protein ProcessingProcessPropertyProtein FamilyProteinsProteomicsReactionRecoveryRecruitment ActivityRegulationRoleSignal PathwaySignal TransductionSirolimusSiteSpeedStressStructureUnited States National Institutes of HealthVacuolar Protein SortingViralWorkYeastsbasecell growthfascinatefungusgenetic approachhigh resolution imaginghuman diseaseinsightinterdisciplinary approachmembernovelnovel therapeuticsself assemblytomographytraffickingtreatment strategyuptake
项目摘要
Microautophagy is a poorly-characterized autophagic pathway defined by direct invagination of
vacuolar (fungi) or lysosomal (higher eukaryotes) membrane for engulfment and degradation of
organelles and cytosolic components. Microautophagy is required for cell survival under
conditions of stress, such as nutrient limitation, and for resumption of cell growth on recovery
from stress. Strikingly, microautophagy is also a key regulator of TOR signaling, which plays
well-established roles in growth, survival and lifespan control. The molecular mechanism of
microautophagy and how it regulates TOR signaling is not understood. Our long-term goal is to
understand the mechanism of microautophagy and how microautophagy is harnessed to
regulate signaling cascades required for growth and development. Our preliminary data
demonstrates that the membrane remodeling required for microautophagy depends on the
dynamin-related protein (DRP) Vps1 and the ESCRTIII component Snf7. DRPs and ESCRTs
are fascinating membrane remodeling machines that are vital for several fundamental cellular
processes including membrane trafficking, mitochondrial dynamics, cytokinesis and viral
budding. DRPs and ESCRTs both couple membrane deformation to self-assembly. Deficiencies
in DRPs and ESCRTs are associated with numerous pathologies due to their central roles in
homeostasis, including neurodegenerative disorders. Our central hypothesis is that the
functional interaction between DRPs and ESCRTs forms the molecular basis for membrane
invagination in microautophagy. Furthermore, we propose that nutrient and stress signaling
pathways converge on Vps1 and ESCRT to regulate their novel function in microautophagy to,
ultimately, control TOR signaling and cell growth. Using genetic, proteomic, cytological and
structural approaches, we will characterize the mechanism of recruitment of DRP and ESCRT to
sites of microautophagy, as well as the regulatory determinants of their function in TOR
signaling. Completion of this work will provide an in-depth understanding of the machinery
required for microautophagy. It will shed mechanistic light on novel aspects of DRP and ESCRT
function that may have broad implications for membrane remodeling processes in general.
Finally, this work will provide important insight into the mechanisms whereby microautophagy
regulates TOR signaling. Dysregulation of TOR signaling is associated with several human
cancers. Hence, the machinery of microautophagy, as a regulator of TOR signaling, represents
a novel target for development of anticancer and antifungal drugs.
微自噬是一种特征不明显的自噬途径,其定义为微自噬细胞的直接内陷,
空泡(真菌)或溶酶体(高等真核生物)膜,用于吞噬和降解
细胞器和胞质组分。微自噬是细胞存活所必需的。
胁迫条件,如营养限制,以及恢复后细胞生长的恢复
因为压力引人注目的是,微自噬也是TOR信号传导的关键调节器,
在生长、生存和寿命控制方面的既定作用。的分子机制
微自噬及其如何调节TOR信号传导尚不清楚。我们的长期目标是
了解微自噬的机制以及微自噬如何被利用来
调节生长和发育所需的信号级联。我们的初步数据
表明微自噬所需的膜重塑取决于
动力蛋白相关蛋白(DRP)Vps1和ESCRTIII组分Snf7。DRP和ESCRT
是迷人的膜重塑机器,对于几种基本的细胞功能至关重要。
包括膜运输、线粒体动力学、胞质分裂和病毒
发芽DRP和ESCRT都将膜变形与自组装相结合。缺陷
在DRP和ESCRT中,由于其在
稳态,包括神经退行性疾病。我们的中心假设是,
DRPs和ESCRT之间的功能相互作用形成了膜的分子基础,
微自噬中的内陷此外,我们认为营养和压力信号
途径会聚在Vps1和ESCRT上以调节它们在微自噬中的新功能,
最终控制TOR信号传导和细胞生长。利用遗传学、蛋白质组学、细胞学和
结构的方法,我们将表征招募的机制DRP和ESCRT,
微自噬的位点,以及它们在TOR中功能的调节决定因素
发信号。完成这项工作将使您深入了解机械
微自噬所必需的。它将揭示DRP和ESCRT的新方面的机制光
功能,可能有广泛的影响,膜重塑过程一般。
最后,这项工作将提供重要的洞察机制,微自噬
调节TOR信号传导。TOR信号转导的失调与几种人类免疫缺陷相关。
癌的因此,微自噬机制作为TOR信号传导的调节器,代表了
一个新的抗癌和抗真菌药物的发展目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marijn Gerard Johannes Ford其他文献
Marijn Gerard Johannes Ford的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marijn Gerard Johannes Ford', 18)}}的其他基金
The Roles of the Dynamin-Related Protein Vps1 and the ESCRT Complex in Microautophagy
动力相关蛋白 Vps1 和 ESCRT 复合物在微自噬中的作用
- 批准号:
9156744 - 财政年份:2016
- 资助金额:
$ 29.2万 - 项目类别:
相似海外基金
Extending the utility and durability of antifungal agents via innovative treatment regimens that minimise drug resistance
通过创新治疗方案最大限度地减少耐药性,延长抗真菌药物的效用和持久性
- 批准号:
MR/Y002164/1 - 财政年份:2024
- 资助金额:
$ 29.2万 - 项目类别:
Research Grant
Engineering microbial cell factories for production of improved polyene antifungal agents
工程微生物细胞工厂用于生产改进的多烯抗真菌剂
- 批准号:
2898887 - 财政年份:2023
- 资助金额:
$ 29.2万 - 项目类别:
Studentship
Morphological profiling for the development of antifungal agents
用于开发抗真菌药物的形态分析
- 批准号:
22H02216 - 财政年份:2022
- 资助金额:
$ 29.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
An efficient approach to find therapeutically effective antifungal agents
寻找治疗有效的抗真菌药物的有效方法
- 批准号:
22K05337 - 财政年份:2022
- 资助金额:
$ 29.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating light-activated therapeutic compounds as antifungal agents.
研究光激活治疗化合物作为抗真菌剂。
- 批准号:
2753345 - 财政年份:2022
- 资助金额:
$ 29.2万 - 项目类别:
Studentship
Discovery of novel therapeutic agents for biliary tract and pancreatic cancer based on antifungal agents
基于抗真菌药物的胆道癌和胰腺癌新型治疗药物的发现
- 批准号:
20H03533 - 财政年份:2020
- 资助金额:
$ 29.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of antifungal agents that target essential protein kinases in A. fumigatus.
开发针对烟曲霉必需蛋白激酶的抗真菌剂。
- 批准号:
2456629 - 财政年份:2020
- 资助金额:
$ 29.2万 - 项目类别:
Studentship
Elucidation of tip growth factor of fungi and construction of screeing system for antifungal agents
真菌尖端生长因子的阐明及抗真菌药物筛选体系的构建
- 批准号:
19K05738 - 财政年份:2019
- 资助金额:
$ 29.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ambruticins: An inspiration to develop novel biocatalysts and antifungal agents
Ambruticins:开发新型生物催化剂和抗真菌剂的灵感
- 批准号:
2107517 - 财政年份:2018
- 资助金额:
$ 29.2万 - 项目类别:
Studentship