Advancing genetic code expansion with Rosetta computational design: improving machinery for bioorthogonal amino acids
通过 Rosetta 计算设计推进遗传密码扩展:改进生物正交氨基酸的机制
基本信息
- 批准号:9189236
- 负责人:
- 金额:$ 5.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:Acid Fast Bacillae Staining MethodActive SitesAddressAffinityAlgorithmsAmino AcidsAmino Acyl-tRNA SynthetasesAreaBindingBiological ModelsBiomedical ResearchCatalysisCellsChemistryCollaborationsComputer SimulationDirected Molecular EvolutionDrug Delivery SystemsEngineeringEvolutionFeedbackFoundationsFutureGenerationsGenetic CodeGoalsHealthHot SpotHybridsLabelLibrariesLigandsLigationMethodsMolecularMutateMutationNatureOperative Surgical ProceduresPolymersPost-Translational Protein ProcessingProtein BiochemistryProtein EngineeringProteinsProtocols documentationReactionResearchScientistSeriesSiteStressStructureTechniquesTechnologyTetanus Helper PeptideTimeTransfer RNATranslationsVariantbasecostdesignfluorescence imagingfunctional groupimaging probeimprovedin vivoin vivo imaginginsightmaterials sciencenovelnovel strategiesnovel therapeuticsprogramsprotein expressionprotein functionprotein structureresearch studyscreeningsuccesstool
项目摘要
Project Summary
The ability to genetically incorporate non-canonical amino acids (ncAAs) in a site-specific
manner has revolutionized the field of protein biochemistry by providing novel tools for studying
and engineering proteins and has had a pronounced influence in several biomedical fields
including regulating protein function, in vivo imaging of proteins, and designing novel
therapeutics. In this technology an orthogonal amino acyl-tRNA synthetase and tRNA pair
(RS/tRNA) that is evolved for new ncAA structure is added to the cell. Despite the advantages
offered by ncAA incorporation, the practical limits on the size of the libraries for RS evolution
restrict the number of residues that can be mutated at each round. Hence, several beneficial
interactions in the first shell and all second shell interactions are overlooked. Therefore,
selected ncAA-RSs don't match the catalytic constants of wild type translation resulting in low
ncAA-protein expression yield and lack of selectivity under many protein expression conditions.
Rosetta computational design program offers an exciting novel option for overcoming this key
limitation in genetic code expansion. Tetrazine-based amino acids (Tet-ncAAs) offer extremely
fast and robust bioorthogonal chemistry for site specific labeling of proteins and therefore will be
an ideal model system for Rosetta based optimization. Fast protein bioorthogonal ligations are
being implemented in biomedical research and material science for many applications including
in vivo imaging, probing protein function, drug delivery, and protein-polymer hybrids.
Engineering Tet-ncAA-RSs is uniquely challenging in addition to the above-mentioned reasons
because the more reactive Tet-ncAAs add additional stress to selection methods.
In this proposal, I will use Rosetta to design better Tet-RSs and to obtain structural insights into
the residues important for binding. This information guides the generation of “smart libraries”
with a higher chance of success via screening lesser variants to overcome the size limitation. In
parallel, I will also improve upon current functionalities in Rosetta by designing novel protocols
and enhancing score functions. This enhancements and additions will be publicly available.
The design of superior sets of RSs for efficient and selective incorporation of Tet-ncAAs
provides scientists with an ideal tool for site-specific labeling of proteins in vivo in a fast and
bioorthogonal manner. This ability is of unequivocal importance for many applications in
biomedical research. The proposed strategy can be generalized to other ncAAs or to address
other issues in the field of genetic code expansion. It will also lay the foundations of a lasting
collaboration between the fields of computational protein design and genetic code expansion.
项目摘要
将非典型氨基酸(ncAA)基因整合到位点特异性氨基酸链中的能力是一种基因工程。
通过提供新的研究工具,
和工程蛋白质,并在几个生物医学领域产生了显着的影响
包括调节蛋白质功能,蛋白质的体内成像,以及设计新的
治疗学在该技术中,正交氨酰-tRNA合成酶和tRNA对
(RS/tRNA)被添加到细胞中。尽管有这些优势
由ncAA公司提供,RS进化的库大小的实际限制
限制在每轮可以突变的残基的数目。因此,一些有益的
忽略了第一壳层中的相互作用和所有第二壳层的相互作用。因此,我们认为,
选择的ncAA-RS与野生型翻译的催化常数不匹配,导致低翻译活性。
ncAA-蛋白表达产率和在许多蛋白表达条件下缺乏选择性。
罗塞塔计算设计程序提供了一个令人兴奋的新的选择,克服这一关键
限制遗传密码的扩展。基于四嗪的氨基酸(Tet-ncAA)提供了极其
用于蛋白质的位点特异性标记的快速和稳健的生物正交化学,因此将是
基于Rosetta的优化的理想模型系统。快速蛋白质生物正交连接是
正在生物医学研究和材料科学中实施,用于许多应用,
体内成像、探测蛋白质功能、药物递送和蛋白质-聚合物杂化物。
除了上述原因外,工程Tet-ncAA-RS具有独特的挑战性
因为更具反应性的Tet-ncAA给选择方法增加了额外的压力。
在这个建议中,我将使用Rosetta来设计更好的Tet-RS,并获得结构上的见解,
这些残基对结合很重要。这些信息指导着“智能图书馆”的生成
通过筛选较少的变体以克服大小限制,具有更高的成功机会。在
同时,我还将通过设计新的协议来改进Rosetta的现有功能
以及增强分数函数。这些增强和补充将公开提供。
用于高效和选择性掺入Tet-ncAA的RS的上级集合的设计
为科学家提供了一种理想的工具,用于在体内快速特异性标记蛋白质,
生物正交法这种能力对于许多应用是明确的重要性,
生物医学研究建议的策略可以推广到其他ncAA或解决
遗传密码扩展领域的其他问题。它还将为一个持久的
计算蛋白质设计和遗传密码扩展领域之间的合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Parisa Hosseinzadeh其他文献
Parisa Hosseinzadeh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Parisa Hosseinzadeh', 18)}}的其他基金
A data-driven approach towards generation of permeable peptide therapeutics
生成可渗透肽疗法的数据驱动方法
- 批准号:
10241206 - 财政年份:2021
- 资助金额:
$ 5.25万 - 项目类别:
Advancing genetic code expansion with Rosetta computational design: improving machinery for bioorthogonal amino acids
通过 Rosetta 计算设计推进遗传密码扩展:改进生物正交氨基酸的机制
- 批准号:
9390387 - 财政年份:2016
- 资助金额:
$ 5.25万 - 项目类别:
Advancing genetic code expansion with Rosetta computational design: improving machinery for bioorthogonal amino acids
通过 Rosetta 计算设计推进遗传密码扩展:改进生物正交氨基酸的机制
- 批准号:
9337262 - 财政年份:2016
- 资助金额:
$ 5.25万 - 项目类别:
相似海外基金
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 5.25万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 5.25万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 5.25万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 5.25万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 5.25万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 5.25万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




