SYSTEM FOR AUTOMATED NONINVASIVE MONITORING OF MOUSE SLEEP AND BEHAVIOR
自动无创监测小鼠睡眠和行为的系统
基本信息
- 批准号:9112029
- 负责人:
- 金额:$ 49.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-04-01 至 2018-04-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAmplifiersAnimal ExperimentationAnimal HousingAnimal WelfareAnimalsBehaviorBehavior DisordersBehavior TherapyBehavior monitoringBehavioralBehavioral AssayBehavioral GeneticsBehavioral ResearchBrainCircadian Rhythm Sleep DisordersCircadian RhythmsClientCodeComputer InterfaceComputer softwareDataDecision TreesDevelopmentDevicesDiabetes MellitusDiscriminationDiseaseElectroencephalographyElectronicsEnvironmentEpilepsyEvaluationEventFeedbackFilmFloorGenesGeneticGenetic ScreeningGenetic studyGoalsGovernmentGrantGroomingHealthHeredityHome environmentImplantInterventionKentuckyKnockout MiceLabelLaboratory ResearchLettersMeasurementMedicalMethodologyMethodsModificationMonitorMotor ActivityMusNarcolepsyNoiseObesityOperative Surgical ProceduresOutcomePatternPersonsPharmaceutical PreparationsPhasePhenotypePhysiologic pulsePlayPolysomnographyPower SourcesPreclinical Drug EvaluationQuantitative Trait LociREM SleepREM Sleep ParasomniasRecoveryResearchResourcesRodentRoleRunningSensorySignal TransductionSleepSleep Apnea SyndromesSleep ArchitectureSleep DeprivationSleep DisordersSleep StagesStressStructureSystemSystems IntegrationTechniquesTestingTimeTraumatic Brain InjuryUniversitiesWakefulnessWorkactigraphyawakebasebrain researchcommercializationcostfeedingfield studyflexibilityfootgene discoveryhigh throughput analysisimprovedinterestmeetingsnerve injurynervous system disordernovelpressureprototyperespiratoryresponsescreeningsensorsignal processingsomatosensorysuccesstooltraittrend
项目摘要
DESCRIPTION (provided by applicant): The basic functions of sleep are still unknown. Abnormal sleep patterns can manifest as a variety of disorders- sleep apnea, parasomnias, REM (rapid eye movement sleep) behavioral disorder (RBD), narcolepsy-many of which are influenced by heredity. There is an increasing focus on characterizing mouse behaviors for genetic and drug studies. However, discovering the genes responsible for sleep and related disorders requires time- consuming large-scale behavioral screening of phenotypes to correlate observed traits with genetics. Behavioral monitoring of mice is usually limited to actigraphic measurements such as video tracking, wheel-running, and photoelectric beam-breaking. Although many of these methods are noninvasive and have potential for high- throughput (HT) application, they monitor mainly locomotor activity without providing information about sleep-wake state and sleep architecture, which are important for investigating sleep disorders. While EEG can be used to accurately determine sleep-wake state, it is invasive and resource-intensive (surgery, recovery, etc.), which limits its application in large-scale genetic studies wih rodents. Signal Solutions, LLC, has developed a sensor cage environment for noninvasive behavioral monitoring that is being used by prominent research groups to identify genes responsible for different traits related to sleep and circadian rhythms. The specific aims of this work are to further improve the capabilities of the piezo system to noninvasively: 1. Discriminate sleep-wake state (sleep/wake, REM/NREM) and behavior within wake (e.g., quiet vs. active, high activity, feeding, grooming) to a level comparable to EEG/EMG by classifying piezo signal features with added low-cost video features; 2. Incorporate real-time feedback stimulation for behavior modification, 3. Integrate electronics and with new multimodal sensing into a compact system for testing in research laboratories, 4. Develop low-cost device for automatic animal welfare monitoring. The envisioned end product is a sensor cage and software interface for HT monitoring of sleep-wake state and behavior in small animals to identify genetic factors responsible for sleep/circadian disorders as well as behavioral effects of pharmacological manipulation, sensory stimulation, or neural injury (e.g., traumatic brain injury, epilepsy). This system will be particularly advantageous for prescreening potentially interesting phenotypes, and reserving invasive EEG analysis for further confirmation. Medical targets of interest are sleep/circadian disorders, sleep apnea, obesity/diabetes, REM/NREM sleep deprivation, and stress, among others. Potential clients include academic research labs as well as industrial labs interested in behavioral monitoring on a large scale (e.g., drug screening).
描述(由申请人提供):睡眠的基本功能仍然未知。异常的睡眠模式可以表现为多种疾病-睡眠呼吸暂停、异态睡眠、REM(快速眼动睡眠)行为障碍(RBD)、发作性睡病-其中许多受遗传影响。有越来越多的关注表征遗传和药物研究的小鼠行为。然而,发现负责睡眠和相关疾病的基因需要耗时的大规模行为筛选表型,以将观察到的性状与遗传学相关联。小鼠的行为监测通常仅限于活动记录测量,如视频跟踪、轮跑和光电光束中断。尽管这些方法中的许多是非侵入性的并且具有高通量(HT)应用的潜力,但是它们主要监测运动活动,而不提供关于睡眠-觉醒状态和睡眠结构的信息,这对于研究睡眠障碍是重要的。虽然EEG可用于准确地确定睡眠-觉醒状态,但它是侵入性的和资源密集型的(手术、恢复等),这限制了其在啮齿动物的大规模遗传研究中的应用。Signal Solutions,LLC开发了一种用于非侵入性行为监测的传感器笼环境,该环境正被著名的研究小组用于识别负责与睡眠和昼夜节律相关的不同特征的基因。这项工作的具体目标是进一步提高压电系统的能力,以非侵入性:1。区分睡眠-觉醒状态(睡眠/觉醒,REM/NREM)和觉醒内的行为(例如,安静与活跃、高活动、进食、梳理)通过对具有添加的低成本视频特征的压电信号特征进行分类而达到与EEG/EMG相当的水平; 2.结合实时反馈刺激行为修正,3。将电子设备和新的多模态传感集成到一个紧凑的系统中,用于研究实验室的测试,4.开发低成本的动物福利自动监测设备。设想的最终产品是用于HT监测小动物的睡眠-觉醒状态和行为的传感器笼和软件接口,以识别导致睡眠/昼夜节律紊乱的遗传因素以及药理学操纵、感觉刺激或神经损伤(例如,创伤性脑损伤、癫痫)。该系统将特别有利于预筛选潜在的感兴趣的表型,并保留侵入性EEG分析进一步确认。感兴趣的医学目标是睡眠/昼夜节律紊乱、睡眠呼吸暂停、肥胖/糖尿病、REM/NREM睡眠剥夺和压力等。潜在客户包括学术研究实验室以及对大规模行为监测感兴趣的工业实验室(例如,药物筛选)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael E Lhamon其他文献
Michael E Lhamon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael E Lhamon', 18)}}的其他基金
SYSTEM FOR AUTOMATED NONINVASIVE MONITORING OF MOUSE SLEEP AND BEHAVIOR
自动无创监测小鼠睡眠和行为的系统
- 批准号:
8981814 - 财政年份:2013
- 资助金额:
$ 49.15万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 49.15万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 49.15万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 49.15万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 49.15万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 49.15万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 49.15万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 49.15万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 49.15万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 49.15万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 49.15万 - 项目类别:
Research Grant