Combining structure-based network biology and heterogeneous computing for rational drug repositioning and polypharmacology

结合基于结构的网络生物学和异构计算进行合理的药物重新定位和多药理学

基本信息

项目摘要

1. Project Summary Drugs are typically developed to modulate the function of specific proteins, which are directly associated with particular disease states. Nonetheless, recent studies suggest that protein-drug interactions are promiscuous and the majority of pharmaceuticals exhibit activity against multiple, often unrelated proteins. The lack of selectivity often leads to undesired drug side effects; yet, these polypharmacological attributes can be used to develop drugs that act on multiple targets of a unique disease pathway, as well as to identify new targets for existing drugs, known as drug repositioning. Although predicting interactomes is becoming increasingly important in drug discovery, a large number of interacting molecules and highly complicated interaction patterns present significant challenges. Clearly, novel computational approaches are desperately needed to rigorously explore drug cross-reactivity. The overall goal of the proposed research is, therefore, to combine a broad scope and promises of computational systems biology, atomic-level modeling of medically relevant biomolecules and interactions among them, and heterogeneous computing using massively parallel accelerators to study drug-oriented interactomes. This innovative project comprises several components. First is to design a fully automated platform for structure-based ligand virtual screening featuring an information theory-based compound selection. By using the Maximum Entropy Method, we will be able to enhance the specificity of scoring functions for ligand ranking. Second, we plan to improve the across-proteome identification of chemically similar drug binding pockets by combining local binding site alignment with molecular docking. The advantage of this new strategy is the capability to explore a much larger space of putative cross-interactions between proteins and small organic compounds. Third, we are going to use new modeling techniques described above to reconstruct and investigate protein-drug interaction networks in the human proteome. By developing novel multi-target antibiotics, we will demonstrate that the proposed network analysis greatly expands the current opportunity space for polypharmacology and rational drug repositioning. Fourth, the scale of the task at hand as well as the level of details put an unprecedented demand for computing resources. Consequently, there is an urgent need to take advantage of modern computer architectures currently available as well as exascale supercomputers that are expected to come into production in the near future. On that account, we plan to develop high-performance codes to fully utilize heterogeneous machines equipped with massively parallel hardware accelerators, NVIDIA GPU and Intel Xeon Phi. Close collaborations with experimental and computer science groups will be part of the proposed research to make advances in this highly specialized field. The expected overall impact of this innovative proposal is that it will 1) fundamentally advance our understanding of protein-drug interaction networks and 2) use this knowledge along with cutting-edge computing technology to support the development of novel therapies.
1.项目摘要 药物通常被开发用于调节特定蛋白质的功能,这些蛋白质与 特殊的疾病状态。尽管如此,最近的研究表明,蛋白质-药物相互作用是混杂的 并且大多数药物表现出对多种通常不相关的蛋白质的活性。缺乏 选择性通常导致不希望的药物副作用;然而,这些多药理学属性可用于 开发作用于独特疾病途径的多个靶点的药物,并确定新的靶点, 现有的药物,称为药物重新定位。尽管预测相互作用组变得越来越重要, 在药物发现中重要的是,大量相互作用的分子和高度复杂的相互作用 模式带来了重大挑战。显然,迫切需要新的计算方法, 严格探索药物交叉反应性。因此,拟议研究的总体目标是将联合收割机 计算系统生物学的广泛范围和承诺,医学相关的原子级建模 生物分子及其相互作用,以及使用大规模并行计算的异构计算 加速剂来研究药物导向的相互作用组。这一创新项目包括几个组成部分。第一 是设计一个全自动的平台,用于基于结构的配体虚拟筛选, 基于理论的化合物选择。通过使用最大熵方法,我们将能够增强 配体排序的评分函数的特异性。其次,我们计划改进跨蛋白质组, 通过结合局部结合位点比对和 分子对接这一新战略的优势是能够探索更大的空间, 蛋白质和小的有机化合物之间的交叉作用。第三,我们将使用新的 上述建模技术,以重建和研究蛋白质-药物相互作用网络, 人类蛋白质组通过开发新型多靶点抗生素,我们将证明所提出的网络 分析大大拓展了当前多药合用和合理药物重新定位的机会空间。 第四,当前任务的规模和细节程度对以下方面提出了前所未有的要求: 计算资源。因此,迫切需要利用现代计算机 目前可用的体系结构以及预计将投入生产的亿万级超级计算机 在近期因此,我们计划开发高性能代码,以充分利用异构 配备大规模并行硬件加速器、NVIDIA GPU和Intel Xeon Phi的计算机。密切 与实验和计算机科学团体的合作将是拟议研究的一部分, 在这个高度专业化的领域取得的进步。这一创新提案的预期总体影响是:1) 从根本上推进我们对蛋白质-药物相互作用网络的理解,2)利用这些知识 沿着尖端的计算技术来支持新疗法的发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michal Brylinski其他文献

Michal Brylinski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.24万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 19.24万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 19.24万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 19.24万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 19.24万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 19.24万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 19.24万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 19.24万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 19.24万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 19.24万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了