Bimodal platform for nondestructive analysis of engineered vascular biomaterials
用于工程血管生物材料无损分析的双模平台
基本信息
- 批准号:9280632
- 负责人:
- 金额:$ 38.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAge-YearsApplications GrantsAreaAssessment toolAtherosclerosisBiochemicalBiocompatible MaterialsBlood VesselsBone MarrowCardiac Surgery proceduresCardiovascular DiseasesCarotid ArteriesCattleCessation of lifeChemicalsClinicalComputing MethodologiesCoronary heart diseaseCustomDataData AnalysesDefectDevelopmentDiagnosticEngineeringEvaluationExcisionExtracellular MatrixFamily suidaeFluorescenceFluorescence SpectroscopyFrequenciesHealthHeterogeneityHistologicImageImage AnalysisImaging technologyImmunology procedureImplantIn VitroIndividualLabelLaboratoriesMeasurementMechanicsMesenchymal Stem CellsMethodsMicroscopyModalityModelingMonitorMorphologyNational Heart, Lung, and Blood InstituteNatureNonionizing RadiationOpticsPatientsPeripheral arterial diseasePrevalenceProcessProductionPropertyQuality of lifeResearchRotationSafetySamplingScanningSignal TransductionSiteStructureStructure-Activity RelationshipSurfaceSystemTechniquesTechnologyTestingTimeTissue EngineeringTissuesTranslationsTubular formationUltrasonicsUltrasonographyValidationattenuationbaseclinical applicationcostimplantationimprovedin vivoinsightinstrumentationmechanical propertiesnovel diagnosticsnovel therapeuticsoptical imagingoptical spectrapericardial sacpublic health relevanceregenerativescaffoldscreeningspectroscopic imagingstatisticstissue support frametoolvascular tissue engineeringworking group
项目摘要
DESCRIPTION (provided by applicant): The objective of this grant application is to research, test and validate a bi-modal diagnostic platform combining optical and ultrasound imaging technologies for real-time, non-destructive in-vitro and in-vivo analysis of composition, structure function and site specific cellular repopulation of extracellular matrix (ECM) scaffolds utilized fr vascular tissue engineering. The proposed approach has the potential to significantly advance the field of vascular tissue engineering and facilitate translation of engineered vascular material to clinical application. The non-destructive nature of the proposed platform enables repeated assessment of ECM scaffold and recellularized construct structure-function relationships both in-vitro and in-vivo. The proposed technology therefore alleviates the need for destructive analysis methods across multiple time points, which are costly, time consuming and frequently impractical. Moreover, the proposed technology will facilitate (a) in-vitro rapid screening of scaffold production methods and non-destructive assessment of batch quality; and (b) non- terminal in-vivo assessment across multiple time points, thereby providing mechanistic insights into engineered vascular tissue regenerative processes. The proposed bi-modal platform will integrate two non-ionizing radiation techniques for label-free tissue analysis: (1) Multispectral Time-Resolved Fluorescence Spectroscopy (TRFS) system for evaluation of ECM composition and biochemical heterogeneities of vascular biomaterials; and (2) High-frequency Ultrasound (US) imaging for evaluation of structural properties and morphology in vascular biomaterials. This is enabled by either Ultrasound Backscatter Microscopy (UBM) for planar scanning or conventional Intravascular Ultrasound (IVUS) for rotational scanning. Four specific aims will be addressed. Aim 1 is focused on developing a set of customized tools (instrumentation and data analysis methods) for in- vitro and in-vivo assessment of vascular scaffolds and constructs. Aim 2 in focused on demonstrating the feasibility of the bi-modal platform as a non-destructive tool for assessment of vascular scaffold properties. Aim 3 is focused on demonstrating the bi-modal platform's ability as a non-destructively tool for in-vitro studying and monitoring of vascular tissue construct formation. Aim 4 is focused on demonstrating the feasibility of the bi-modal technique as a non-destructive tool for monitoring the maturation of vascular constructs in-vivo post- implantation. In summary, the technology proposed for development and validation in this grant application offers a non-destructive solution for the evaluation of many important features (compositional, structural and functional) associated with the maturity and functionality of vascular biomaterials. This is likely to improve our ability to produce engineered vascular tissues
in the laboratory for in-vivo implantation which can accelerate the integration time of the implant
with the surrounding host tissue, thus restoring the desired quality of life to the patient. Emphasis will be placed on the evaluation of engineered vascular tissue, though, if successful, this non-destructive technique can be applied to assess a variety of engineered tissues.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leigh Gareth Griffiths其他文献
Leigh Gareth Griffiths的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leigh Gareth Griffiths', 18)}}的其他基金
Atraumatic Non-fibrotic Epicardial Pacing with E-Bioadhesive Devices
使用电子生物粘附装置进行无创伤性非纤维化心外膜起搏
- 批准号:
10637562 - 财政年份:2023
- 资助金额:
$ 38.65万 - 项目类别:
Immunology of xenogeneic extracellular matrix scaffolds for heart valve tissue engineering
心脏瓣膜组织工程异种细胞外基质支架的免疫学
- 批准号:
10379320 - 财政年份:2021
- 资助金额:
$ 38.65万 - 项目类别:
Immunology of xenogeneic extracellular matrix scaffolds for heart valve tissue engineering
心脏瓣膜组织工程异种细胞外基质支架的免疫学
- 批准号:
10199250 - 财政年份:2021
- 资助金额:
$ 38.65万 - 项目类别:
Immunology of xenogeneic extracellular matrix scaffolds for heart valve tissue engineering
心脏瓣膜组织工程异种细胞外基质支架的免疫学
- 批准号:
10608128 - 财政年份:2021
- 资助金额:
$ 38.65万 - 项目类别:
Bimodal platform for nondestructive analysis of engineered vascular biomaterials
用于工程血管生物材料无损分析的双模平台
- 批准号:
8883056 - 财政年份:2015
- 资助金额:
$ 38.65万 - 项目类别:
Xenogeneic Scaffolds for Heart Valve Tissue Engineering
用于心脏瓣膜组织工程的异种支架
- 批准号:
9251875 - 财政年份:2013
- 资助金额:
$ 38.65万 - 项目类别:
Xenogeneic Scaffolds for Heart Valve Tissue Engineering
用于心脏瓣膜组织工程的异种支架
- 批准号:
8704274 - 财政年份:2013
- 资助金额:
$ 38.65万 - 项目类别:
Xenogeneic Scaffolds for Heart Valve Tissue Engineering
用于心脏瓣膜组织工程的异种支架
- 批准号:
8503034 - 财政年份:2013
- 资助金额:
$ 38.65万 - 项目类别:
相似海外基金
PREDICTING CARIES RISK IN UNDERSERVED CHILDREN, FROM TODDLERS TO THE SCHOOL-AGE YEARS, IN PRIMARY HEALTHCARE SETTINGS
预测初级医疗保健机构中从幼儿到学龄儿童的龋齿风险
- 批准号:
10361268 - 财政年份:2021
- 资助金额:
$ 38.65万 - 项目类别:
Predicting Caries Risk in Underserved Children, from Toddlers to the School-Age Years, in Primary Healthcare Settings
预测初级医疗机构中服务不足的儿童(从幼儿到学龄儿童)的龋齿风险
- 批准号:
9751077 - 财政年份:2011
- 资助金额:
$ 38.65万 - 项目类别:
Predicting Caries Risk in Underserved Children, from Toddlers to the School-Age Years, in Primary Healthcare Settings
预测初级医疗机构中服务不足的儿童(从幼儿到学龄儿童)的龋齿风险
- 批准号:
9976990 - 财政年份:2011
- 资助金额:
$ 38.65万 - 项目类别:
Predicting Caries Risk in Underserved Children, from Toddlers to the School-Age Years, in Primary Healthcare Settings
预测初级医疗机构中服务不足的儿童(从幼儿到学龄儿童)的龋齿风险
- 批准号:
10457019 - 财政年份:2011
- 资助金额:
$ 38.65万 - 项目类别:
Predicting Caries Risk in Underserved Children, from Toddlers to the School-Age Years, in Primary Healthcare Settings
预测初级医疗机构中服务不足的儿童(从幼儿到学龄儿童)的龋齿风险
- 批准号:
10213006 - 财政年份:2011
- 资助金额:
$ 38.65万 - 项目类别: