Engineering Gp2 as a small ligand scaffold
将 Gp2 工程化为小型配体支架
基本信息
- 批准号:9219734
- 负责人:
- 金额:$ 31.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdvanced DevelopmentAffinityAmino AcidsAntibodiesAntibody Binding SitesAreaBindingBiodistributionBioinformaticsBiologicalBiological MarkersBiologyBiophysicsChargeChemicalsClinicalConsensusDevelopmentEngineeringEquilibriumEvaluationEvolutionExtravasationFeedbackFrequenciesGP2 geneGenerationsHumanImageImmunoglobulin FragmentsLeadLibrariesLigand BindingLigandsModelingMolecularMolecular TargetMusOutcomePDCD1LG1 genePenetrationPerformancePhylogenetic AnalysisPhysiologicalPositron-Emission TomographyProductionProteinsResearchSensitivity and SpecificitySiteSolubilitySolventsSurfaceTestingTimeTissuesVariantX-Ray Computed Tomographycombinatorialcomparativecross reactivitydeep sequencingdesignfitnesshydrophilicityimaging agentimmune checkpointimprovedin vivoinnovationmolecular diagnosticsmolecular imagingmolecular recognitionmutantpreclinical developmentscaffoldscreeningtargeted agenttargeted treatmenttumor
项目摘要
Molecular recognition ligands are critical for molecular diagnostics, targeted therapy, and biological study.
Robust, efficient discovery of stable, selective affinity ligands towards the multitude of important targets would
accelerate advances in these fields. Though numerous scaffolds – ranging from antibodies to alternative
topologies – have been developed to fill these needs, all have limitations. Importantly, the ability to efficiently
evolve binding functionality onto an ultra-small scaffold, while retaining biophysical integrity, would be a
powerful advance. Small size aids extravasation, tissue penetration, and clearance of unbound background
ligand for improved physiological performance, particularly for molecular imaging. Moreover, small single
domains facilitate production, site-specific conjugation, and designer multi-functional fusions. To this end, we
have discovered the 45-amino acid Gp2 domain via a bioinformatics approach, and we have validated its
efficacy as a ligand capable of strong, specific binding while retaining stability. Herein, we propose to advance
development of this scaffold.
The objective of this research is to engineer the framework and diverse paratope of the 45-amino acid
Gp2 domain to advance its utility as a molecular targeting scaffold and exemplify utility by development of
positron emission tomography imaging agents for PD-L1. The research plan consists of three aims. (1)
Advance combinatorial library design – with a sitewise gradient of diversity identified via high-throughput ligand
evolution and deep sequencing feedback – to enable direct selection of strong, specific binders in the Gp2
scaffold. Thousands of diverse Gp2 ligands will be evolved from a naïve combinatorial library. Deep
sequencing will reveal sitewise amino acid frequencies that will guide second-generation library designs.
These designs will be comparatively evaluated for evolutionary fitness. Evolved Gp2 ligands will be functionally
and biophysically characterized. (2) Engineer the Gp2 framework to enhance proteolytic and thermal stability,
solubility, and physiological passivity. Two innovative stability-engineering strategies will be compared to more
conventional approaches to inform evolution and identify an improved Gp2 framework. Modulation of
hydrophilicity and charge will further improve the Gp2 framework. (3) Perform preclinical development of
molecular PET imaging agents for PD-L1 capable of specific, sensitive early time point (~1 h) imaging. The
advanced paratope evolution and framework of Gp2 will be applied to develop 5 kDa domains that selectively
target PD-L1 in vivo. These will be compared to antibodies and fragments for PET imaging in xenografted
mouse tumor models.
分子识别配体对于分子诊断、靶向治疗和生物学研究至关重要。
针对众多重要靶标的稳定、选择性亲和配体的稳健、有效发现将
加速这些领域的进步。尽管支架数量众多——从抗体到替代品
拓扑——是为了满足这些需求而开发的,但都有局限性。重要的是,能够高效地
将结合功能发展到超小支架上,同时保留生物物理完整性,将是一个
强大的推进。小尺寸有助于外渗、组织渗透和未结合背景的清除
配体可改善生理性能,特别是分子成像。而且,小单
结构域有利于生产、位点特异性缀合和设计师多功能融合。为此,我们
通过生物信息学方法发现了 45 个氨基酸的 Gp2 结构域,并且我们已经验证了其
作为配体的功效,能够强、特异性结合,同时保持稳定性。在此,我们建议推进
该脚手架的开发。
本研究的目的是设计 45 个氨基酸的框架和多样化互补位
Gp2 结构域可提高其作为分子靶向支架的实用性,并通过开发来举例说明实用性
PD-L1 的正电子发射断层扫描显像剂。该研究计划包括三个目标。 (1)
先进的组合文库设计——通过高通量配体识别位点多样性梯度
进化和深度测序反馈——能够直接选择 Gp2 中强、特异性的结合物
脚手架。数以千计的不同 Gp2 配体将从一个简单的组合库中进化而来。深的
测序将揭示位点氨基酸频率,从而指导第二代文库设计。
这些设计将针对进化适应性进行比较评估。进化的 Gp2 配体将在功能上
和生物物理特征。 (2) 设计 Gp2 框架以增强蛋白水解和热稳定性,
溶解度和生理被动性。两种创新的稳定性工程策略将与更多的策略进行比较
为进化提供信息并确定改进的 Gp2 框架的传统方法。调制
亲水性和电荷将进一步改善Gp2框架。 (3) 进行临床前开发
PD-L1 分子 PET 显像剂能够进行特异性、灵敏的早期时间点(~1 小时)成像。这
先进的互补位进化和 Gp2 框架将用于开发 5 kDa 结构域,选择性地
体内靶向 PD-L1。这些将与异种移植物中 PET 成像的抗体和片段进行比较
小鼠肿瘤模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Hackel其他文献
Benjamin Hackel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Hackel', 18)}}的其他基金
Engineering synthetic ligands with potent allosteric inhibition of tumornecrosis factor receptors
工程合成配体对肿瘤坏死因子受体具有有效的变构抑制作用
- 批准号:
10463613 - 财政年份:2019
- 资助金额:
$ 31.8万 - 项目类别:
Engineering synthetic ligands with potent allosteric inhibition of tumornecrosis factor receptors
工程合成配体对肿瘤坏死因子受体具有有效的变构抑制作用
- 批准号:
10227074 - 财政年份:2019
- 资助金额:
$ 31.8万 - 项目类别:
Engineering synthetic ligands with potent allosteric inhibition of tumornecrosis factor receptors
工程合成配体对肿瘤坏死因子受体具有有效的变构抑制作用
- 批准号:
10018713 - 财政年份:2019
- 资助金额:
$ 31.8万 - 项目类别:
Molecular PET Imaging of MET with Small Protein Ligands
小蛋白质配体 MET 的分子 PET 成像
- 批准号:
8890455 - 财政年份:2015
- 资助金额:
$ 31.8万 - 项目类别:
相似海外基金
ADVANCED DEVELOPMENT OF LQ A LIPOSOME-BASED SAPONIN-CONTAINING ADJUVANT FOR USE IN PANSARBECOVIRUS VACCINES
用于 Pansarbecovirus 疫苗的 LQ A 脂质体含皂苷佐剂的先进开发
- 批准号:
10935820 - 财政年份:2023
- 资助金额:
$ 31.8万 - 项目类别:
ADVANCED DEVELOPMENT OF BBT-059 AS A RADIATION MEDICAL COUNTERMEASURE FOR DOSING UP TO 48H POST EXPOSURE"
BBT-059 的先进开发,作为辐射医学对策,可在暴露后 48 小时内进行给药”
- 批准号:
10932514 - 财政年份:2023
- 资助金额:
$ 31.8万 - 项目类别:
Advanced Development of a Combined Shigella-ETEC Vaccine
志贺氏菌-ETEC 联合疫苗的先进开发
- 批准号:
10704845 - 财政年份:2023
- 资助金额:
$ 31.8万 - 项目类别:
Advanced development of composite gene delivery and CAR engineering systems
复合基因递送和CAR工程系统的先进开发
- 批准号:
10709085 - 财政年份:2023
- 资助金额:
$ 31.8万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10409385 - 财政年份:2022
- 资助金额:
$ 31.8万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10710595 - 财政年份:2022
- 资助金额:
$ 31.8万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 31.8万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE CANDIDATE FOR STAPHYLOCOCCUS AUREUS INFECTION
金黄色葡萄球菌感染候选疫苗的高级开发
- 批准号:
10710588 - 财政年份:2022
- 资助金额:
$ 31.8万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10788051 - 财政年份:2022
- 资助金额:
$ 31.8万 - 项目类别:














{{item.name}}会员




