SMALL NON-CODING RNA REGULATION OF RAS-GTPase FUNCTION IN EPIDERMAL HOMEOSTASIS

小非编码 RNA 对表皮稳态中 RAS-GTP 酶功能的调节

基本信息

  • 批准号:
    9293751
  • 负责人:
  • 金额:
    $ 12.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-06-01 至 2022-03-31
  • 项目状态:
    已结题

项目摘要

SMALL NON-CODING RNA REGULATION OF RAS-GTPase FUNCTION in EPIDERMAL HOMEOSTASIS PROJECT SUMMARY/ABSTRACT The Ras-MAPK signal transduction pathway is a critical regulator of the epidermis as dysregulation of Ras- MAPK signaling inhibits epidermal differentiation and is a major driver of tumorigenesis. Our recent discovery that snoRNAs directly interact with and regulate Ras function represents a major paradigm shift in our understanding of small GTPase regulation. Using our novel UV-C cross-linking and immunoprecipitation platform, irCLIP, to characterize transcriptome wide RAS-superfamily GTPase interactions with RNA, we have discovered a rich and complex web of snoRNA-RAS-GTPase interactions suggesting that snoRNAs may regulate all biological processes under RAS-superfamily control, including biochemical signaling nodes, actin/membrane organization, vesicular and intracellular protein trafficking and nuclear/cytoplasmic transport. The long term goals of this K01 application are to deeply characterize the regulatory functions and mechanisms of action of small nucelolar RNAs in modulation of Ras and RAS-superfamily GTPases in control of epidermal homeostasis. In Aim I, we will focus on defining the specificity and breadth of C/D box snoRNA modulation of RAS- superfamily GTPase functions. Our preliminary irCLIP-seq data showed that members of all 5 RAS-subfamilies, RAS, RHO, ARF, RAB and RAN, directly interacted with SNORD50A/B. Thus SNORD50A/B may be a global repressor of RAS-superfamily GTPases as has been described for K-Ras. Using CRISPR/Cas9 gene editing, SNORD50A/B loss-of-function studies will test RAS-GTPase activation levels of 9 RAS-superfamily GTPases spanning all 5 subfamilies. Activation status of biochemical pathways downstream of active-RAS-GTPases will also be monitored with IP-kinase assays and/or phospho-immunoblots when applicable. Our irCLIP-seq data also revealed that Ras isoforms interacted with >20 C/D box snoRNAs, several of which are amplified in cancer. This supports the hypothesis that multiple snoRNAs participate in the regulation of Ras function. In Aim IB, we will use CRISPR-mediated gene editing to excise select Ras-interacting snoRNAs from primary human keratinocytes and assess loss-of-function via analysis of Ras-GTP levels, ERK1/2 and AKT phosphorylation levels, and on epidermal homeostasis in 3D human tissue models. Together, this aim will reveal the extent to which C/D box snoRNAs regulate Ras and RAS-superfamily GTPase functions. Aim II is designed to functionally characterize the RNA-dependent Ras protein interactome. Because of their ability to suppress interaction of Ras with farnesyltransferase, we hypothesized that SNORD50A/B function as adaptors to modulate specific Ras-protein interactions. Using a tandem affinity purification and proximal protein biotinylation (BioID) approach, we compared the interactomes of WT to mutant Ras against WT Ras in a SNORD50A/B +/+ or -/- background. This led to a distilled list of protein interactions that were altered in a SNORD50A/B-specific manner and support the hypothesis that SNORD50A/B regulate vesicular trafficking of Ras from the Golgi to the plasma membrane. CRISPR-mediated loss-of-function studies will be used to assess how these candidate factors contribute to regulation of Ras in control of epidermal homeostasis in 3D tissue models. In a manner orthogonal and complementary to Aim IIA, I will identify global RNA- dependent Ras protein interactions in Aim IIB. SDS-PAGE resolution of irCLIP-adaptor ligated Ras-RNA complexes support the hypothesis that additional proteins are being co-purified with Ras in an RNA-dependent manner. Aim IIB will use our novel irCLIP-mass-spectrometry method to identify these factors. Taken together, this aim will serve to functionally characterize and broaden our understanding of how RNA organizes Ras protein complexes to control epidermal homeostasis.
SMALL NON-CODING RNA REGULATION OF RAS-GTPase FUNCTION in EPIDERMAL HOMEOSTASIS PROJECT SUMMARY/ABSTRACT The Ras-MAPK signal transduction pathway is a critical regulator of the epidermis as dysregulation of Ras- MAPK signaling inhibits epidermal differentiation and is a major driver of tumorigenesis. Our recent discovery that snoRNAs directly interact with and regulate Ras function represents a major paradigm shift in our understanding of small GTPase regulation. Using our novel UV-C cross-linking and immunoprecipitation platform, irCLIP, to characterize transcriptome wide RAS-superfamily GTPase interactions with RNA, we have discovered a rich and complex web of snoRNA-RAS-GTPase interactions suggesting that snoRNAs may regulate all biological processes under RAS-superfamily control, including biochemical signaling nodes, actin/membrane organization, vesicular and intracellular protein trafficking and nuclear/cytoplasmic transport. The long term goals of this K01 application are to deeply characterize the regulatory functions and mechanisms of action of small nucelolar RNAs in modulation of Ras and RAS-superfamily GTPases in control of epidermal homeostasis. In Aim I, we will focus on defining the specificity and breadth of C/D box snoRNA modulation of RAS- superfamily GTPase functions. Our preliminary irCLIP-seq data showed that members of all 5 RAS-subfamilies, RAS, RHO, ARF, RAB and RAN, directly interacted with SNORD50A/B. Thus SNORD50A/B may be a global repressor of RAS-superfamily GTPases as has been described for K-Ras. Using CRISPR/Cas9 gene editing, SNORD50A/B loss-of-function studies will test RAS-GTPase activation levels of 9 RAS-superfamily GTPases spanning all 5 subfamilies. Activation status of biochemical pathways downstream of active-RAS-GTPases will also be monitored with IP-kinase assays and/or phospho-immunoblots when applicable. Our irCLIP-seq data also revealed that Ras isoforms interacted with >20 C/D box snoRNAs, several of which are amplified in cancer. This supports the hypothesis that multiple snoRNAs participate in the regulation of Ras function. In Aim IB, we will use CRISPR-mediated gene editing to excise select Ras-interacting snoRNAs from primary human keratinocytes and assess loss-of-function via analysis of Ras-GTP levels, ERK1/2 and AKT phosphorylation levels, and on epidermal homeostasis in 3D human tissue models. Together, this aim will reveal the extent to which C/D box snoRNAs regulate Ras and RAS-superfamily GTPase functions. Aim II is designed to functionally characterize the RNA-dependent Ras protein interactome. Because of their ability to suppress interaction of Ras with farnesyltransferase, we hypothesized that SNORD50A/B function as adaptors to modulate specific Ras-protein interactions. Using a tandem affinity purification and proximal protein biotinylation (BioID) approach, we compared the interactomes of WT to mutant Ras against WT Ras in a SNORD50A/B +/+ or -/- background. This led to a distilled list of protein interactions that were altered in a SNORD50A/B-specific manner and support the hypothesis that SNORD50A/B regulate vesicular trafficking of Ras from the Golgi to the plasma membrane. CRISPR-mediated loss-of-function studies will be used to assess how these candidate factors contribute to regulation of Ras in control of epidermal homeostasis in 3D tissue models. In a manner orthogonal and complementary to Aim IIA, I will identify global RNA- dependent Ras protein interactions in Aim IIB. SDS-PAGE resolution of irCLIP-adaptor ligated Ras-RNA complexes support the hypothesis that additional proteins are being co-purified with Ras in an RNA-dependent manner. Aim IIB will use our novel irCLIP-mass-spectrometry method to identify these factors. Taken together, this aim will serve to functionally characterize and broaden our understanding of how RNA organizes Ras protein complexes to control epidermal homeostasis.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian J Zarnegar其他文献

Noncanonical NF-κB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK
非经典 NF-κB 激活需要衔接蛋白 cIAP1、cIAP2、TRAF2 和 TRAF3 与激酶 NIK 组成的调节复合物的协同组装。
  • DOI:
    10.1038/ni.1676
  • 发表时间:
    2008-11-09
  • 期刊:
  • 影响因子:
    27.600
  • 作者:
    Brian J Zarnegar;Yaya Wang;Douglas J Mahoney;Paul W Dempsey;Herman H Cheung;Jeannie He;Travis Shiba;Xiaolu Yang;Wen-chen Yeh;Tak W Mak;Robert G Korneluk;Genhong Cheng
  • 通讯作者:
    Genhong Cheng

Brian J Zarnegar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian J Zarnegar', 18)}}的其他基金

SMALL NON-CODING RNA REGULATION OF RAS-GTPase FUNCTION IN EPIDERMAL HOMEOSTASIS
小非编码 RNA 对表皮稳态中 RAS-GTP 酶功能的调节
  • 批准号:
    9905332
  • 财政年份:
    2017
  • 资助金额:
    $ 12.74万
  • 项目类别:

相似海外基金

ADVANCED DEVELOPMENT OF LQ A LIPOSOME-BASED SAPONIN-CONTAINING ADJUVANT FOR USE IN PANSARBECOVIRUS VACCINES
用于 Pansarbecovirus 疫苗的 LQ A 脂质体含皂苷佐剂的先进开发
  • 批准号:
    10935820
  • 财政年份:
    2023
  • 资助金额:
    $ 12.74万
  • 项目类别:
ADVANCED DEVELOPMENT OF BBT-059 AS A RADIATION MEDICAL COUNTERMEASURE FOR DOSING UP TO 48H POST EXPOSURE"
BBT-059 的先进开发,作为辐射医学对策,可在暴露后 48 小时内进行给药”
  • 批准号:
    10932514
  • 财政年份:
    2023
  • 资助金额:
    $ 12.74万
  • 项目类别:
Advanced Development of a Combined Shigella-ETEC Vaccine
志贺氏菌-ETEC 联合疫苗的先进开发
  • 批准号:
    10704845
  • 财政年份:
    2023
  • 资助金额:
    $ 12.74万
  • 项目类别:
Advanced development of composite gene delivery and CAR engineering systems
复合基因递送和CAR工程系统的先进开发
  • 批准号:
    10709085
  • 财政年份:
    2023
  • 资助金额:
    $ 12.74万
  • 项目类别:
Advanced Development of Gemini-DHAP
Gemini-DHAP的高级开发
  • 批准号:
    10760050
  • 财政年份:
    2023
  • 资助金额:
    $ 12.74万
  • 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
  • 批准号:
    10409385
  • 财政年份:
    2022
  • 资助金额:
    $ 12.74万
  • 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
  • 批准号:
    10710595
  • 财政年份:
    2022
  • 资助金额:
    $ 12.74万
  • 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
  • 批准号:
    10630975
  • 财政年份:
    2022
  • 资助金额:
    $ 12.74万
  • 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE CANDIDATE FOR STAPHYLOCOCCUS AUREUS INFECTION
金黄色葡萄球菌感染候选疫苗的高级开发
  • 批准号:
    10710588
  • 财政年份:
    2022
  • 资助金额:
    $ 12.74万
  • 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
  • 批准号:
    10788051
  • 财政年份:
    2022
  • 资助金额:
    $ 12.74万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了