Regulation of vascular smooth muscle cell plasticity
血管平滑肌细胞可塑性的调节
基本信息
- 批准号:9211370
- 负责人:
- 金额:$ 41.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-02-03 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:AngioplastyAtherosclerosisBiologyBlood VesselsBlood flowBypassCardiovascular systemCell CycleCell Differentiation processCellular biologyChromatinComplementDNADNA MethylationDataEmbryoEpigenetic ProcessFailureFamilyFutureGene ExpressionGenesGoalsGrowthGrowth FactorHematopoietic stem cellsHyperplasiaIn VitroIndividualInjuryKnock-outKnockout MiceMediatingMediator of activation proteinMicroRNAsModelingMolecularMolecular ConformationMuscle CellsOperative Surgical ProceduresPathologyPathway interactionsPatientsPhenotypePlatelet-Derived Growth FactorPrevention therapyProceduresProcessProteinsQuantitative Reverse Transcriptase PCRRegulationRoleSamplingSirolimusSmooth MuscleStem Cell FactorStem cellsStentsSurgical complicationTestingTherapeuticTransplantationVascular DiseasesVascular Smooth MuscleViralc-myc Genescardiovascular disorder therapycell dedifferentiationfemoral arterygraft failurehealingimprovedin vivoin vivo Modelinhibitor/antagonistknock-downmyocardinnoveloverexpressionpluripotencyprogramspromoterpublic health relevanceresponserestenosis
项目摘要
DESCRIPTION (provided by applicant): Regulation of VSMC phenotype remains a key unanswered question in vascular smooth muscle cell (VSMC) biology. VSMC retain a remarkable plasticity to de-differentiate and re-enter the cell cycle allowing for growth and healing. However, such plasticity can also contribute to severe vascular pathologies, including restenosis, graft failure, atherosclerosis, and transplant vasculopathy. Remarkably, despite intense study, the process regulating VSMC plasticity is largely unknown with few therapies successfully targeting this process. With the growing numbers of patients suffering from vascular disease the discovery of novel targets is urgently warranted. We have made the exciting discovery that de-differentiated VSMC express genes associated with stem cell pluripotency, including Sox2, Oct4, Nanog, and KLF4. We propose that these stem cell-associated genes account for the unique plasticity of mature VSMC. Recent groundbreaking studies have identified the TET (ten-eleven translocations) family of chromatin modifying proteins as key mediators of pluripotency in embryonic and hematopoietic stem cells. Our Preliminary Results implicate TET2 as an epigenetic master regulator of VSMC phenotype. Importantly, we find that TET2 inhibits expression of stem cell-associated genes and classic markers of the de-differentiated phenotype. We previously discovered that the mTORC1 inhibitor, rapamycin, promotes VSMC differentiation. We now find that rapamycin regulates TET2 expression. Remarkably, we find that TET2 also regulates miRNAs that can modulate both differentiation-specific and stem cell-associated gene expression. We hypothesize that TET2 is a master regulator of VSMC phenotype through its coordinated regulation of the promoters of contractile and stem cell-associated genes, as well as of miRNAs. In Specific Aim 1, we will determine the role of stem cell-associated genes in VSMC phenotype. In Specific Aim 2, we will determine the role of TET2-regulated miRNAs in VSMC phenotype. In Specific Aim 3, we will determine whether targeting TET2 or stem cell-associated genes has therapeutic utility in in vivo models of intimal hyperplasia. If our goals are achieved, we will have identified a nove mechanism underlying VSMC plasticity. Understanding the critical mechanisms by which mTORC1 regulates VSMC phenotype will lead to improved cardiovascular therapeutics.
描述(申请人提供):VSMC表型的调节仍然是血管平滑肌细胞(VSMC)生物学中尚未回答的关键问题。VSMC保持着显著的可塑性,可以去分化并重新进入细胞周期,从而允许生长和愈合。然而,这种可塑性也可能导致严重的血管病变,包括再狭窄、移植失败、动脉粥样硬化和移植血管病变。值得注意的是,尽管进行了密集的研究,但调控VSMC可塑性的过程在很大程度上是未知的,几乎没有成功针对这一过程的治疗方法。随着越来越多的患者患有血管疾病,迫切需要发现新的靶点。我们已经有了令人兴奋的发现,去分化的VSMC表达与干细胞多能性相关的基因,包括Sox2,Oct4,Nanog和KLF4。我们认为这些干细胞相关基因解释了成熟VSMC独特的可塑性。最近的突破性研究已经确定染色质修饰蛋白的TET(十-十一易位)家族是胚胎和造血干细胞多能性的关键介质。我们的初步结果表明,TET2是VSMC表型的表观主调控因子。重要的是,我们发现TET2抑制干细胞相关基因和去分化表型的经典标记的表达。我们先前发现mTORC1抑制剂雷帕霉素促进VSMC分化。我们现在发现雷帕霉素调节TET2的表达。值得注意的是,我们发现TET2还调节miRNAs,后者可以调节分化特异性和干细胞相关基因的表达。我们假设TET2是VSMC表型的主要调节者,它通过协调调节收缩和干细胞相关基因的启动子,以及miRNAs。在特定的目标1中,我们将确定干细胞相关基因在VSMC表型中的作用。在特定的目标2中,我们将确定TET2调节的miRNAs在VSMC表型中的作用。在特定的目标3中,我们将确定靶向TET2或干细胞相关基因在体内内膜增生模型中是否具有治疗作用。如果我们的目标实现,我们将确定VSMC可塑性的新机制。了解mTORC1调节VSMC表型的关键机制将有助于心血管治疗的改进。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kathleen Ann Martin其他文献
Kathleen Ann Martin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kathleen Ann Martin', 18)}}的其他基金
Vascular Discovery, From Genes to Medicine 2023
血管发现,从基因到医学 2023
- 批准号:
10683501 - 财政年份:2023
- 资助金额:
$ 41.63万 - 项目类别:
2022 Vascular Discovery: From Genes to Medicine
2022 年血管发现:从基因到医学
- 批准号:
10469131 - 财政年份:2022
- 资助金额:
$ 41.63万 - 项目类别:
Novel insights into intimal hyperplasia in cardiac allograft vasculopathy
对心脏同种异体移植血管病中内膜增生的新见解
- 批准号:
10090623 - 财政年份:2018
- 资助金额:
$ 41.63万 - 项目类别:
Epigenetic control of vascular smooth muscle in cardiovascular disease
心血管疾病中血管平滑肌的表观遗传控制
- 批准号:
8761918 - 财政年份:2014
- 资助金额:
$ 41.63万 - 项目类别:
Regulation of vascular smooth muscle cell plasticity
血管平滑肌细胞可塑性的调节
- 批准号:
8998052 - 财政年份:2014
- 资助金额:
$ 41.63万 - 项目类别:
Regulation of vascular smooth muscle cell plasticity
血管平滑肌细胞可塑性的调节
- 批准号:
8630004 - 财政年份:2014
- 资助金额:
$ 41.63万 - 项目类别:
Regulation of vascular smooth muscle cell plasticity
血管平滑肌细胞可塑性的调节
- 批准号:
8798690 - 财政年份:2014
- 资助金额:
$ 41.63万 - 项目类别:
相似海外基金
The Role of SECTM1 in Monocyte Biology and Atherosclerosis
SECTM1 在单核细胞生物学和动脉粥样硬化中的作用
- 批准号:
10680450 - 财政年份:2022
- 资助金额:
$ 41.63万 - 项目类别:
The Role of SECTM1 in Monocyte Biology and Atherosclerosis
SECTM1 在单核细胞生物学和动脉粥样硬化中的作用
- 批准号:
10525199 - 财政年份:2022
- 资助金额:
$ 41.63万 - 项目类别:
SPHINGOLIPID BIOLOGY OF MACROPHAGE IN CORONARY ATHEROSCLEROSIS DEVELOPMENT AND PROGRESSION
冠状动脉粥样硬化发生和进展中巨噬细胞的鞘脂生物学
- 批准号:
10542823 - 财政年份:2021
- 资助金额:
$ 41.63万 - 项目类别:
Chemical Biology to Modulate PCSK9 and Treat Atherosclerosis
调节 PCSK9 和治疗动脉粥样硬化的化学生物学
- 批准号:
10852687 - 财政年份:2021
- 资助金额:
$ 41.63万 - 项目类别:
Chemical Biology to Modulate PCSK9 and Treat Atherosclerosis
调节 PCSK9 和治疗动脉粥样硬化的化学生物学
- 批准号:
10598882 - 财政年份:2021
- 资助金额:
$ 41.63万 - 项目类别:
Chemical Biology to Modulate PCSK9 and Treat Atherosclerosis
调节 PCSK9 和治疗动脉粥样硬化的化学生物学
- 批准号:
10370428 - 财政年份:2021
- 资助金额:
$ 41.63万 - 项目类别:
SPHINGOLIPID BIOLOGY OF MACROPHAGE IN CORONARY ATHEROSCLEROSIS DEVELOPMENT AND PROGRESSION
冠状动脉粥样硬化发生和进展中巨噬细胞的鞘脂生物学
- 批准号:
10321959 - 财政年份:2021
- 资助金额:
$ 41.63万 - 项目类别:
Chemical Biology to Modulate PCSK9 and Treat Atherosclerosis
调节 PCSK9 和治疗动脉粥样硬化的化学生物学
- 批准号:
10631047 - 财政年份:2021
- 资助金额:
$ 41.63万 - 项目类别:
Chemical Biology to Modulate PCSK9 and Treat Atherosclerosis
调节 PCSK9 和治疗动脉粥样硬化的化学生物学
- 批准号:
10215201 - 财政年份:2021
- 资助金额:
$ 41.63万 - 项目类别:
Role of Shear-Sensitive Protein HEG1 in Endothelial Biology and Atherosclerosis
剪切敏感蛋白 HEG1 在内皮生物学和动脉粥样硬化中的作用
- 批准号:
10459220 - 财政年份:2020
- 资助金额:
$ 41.63万 - 项目类别:














{{item.name}}会员




