Characterizing the ion-pair dynamics and their roles in protein-DNA association
表征离子对动力学及其在蛋白质-DNA 关联中的作用
基本信息
- 批准号:9253410
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-04-01 至 2018-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffinityBehaviorBiologicalBiological ModelsBiological ProcessBiophysicsCatalysisCationsChemicalsChemistryCollaborationsColorComplexComputer SimulationDNADNA BindingDNA Binding DomainDNA StructureDNA-Protein InteractionDrosophila genusDrug DesignEntropyEvolutionFluorescenceFutureGoalsGuanineHumanHuman EngineeringHydrogen BondingIonsKnowledgeLeadLifeMacromolecular ComplexesMethodsMolecularMolecular ConformationMotionNucleic AcidsOxygenPharmaceutical PreparationsPlayPreclinical Drug EvaluationProcessProtein EngineeringProteinsProtonsRNAResearchResearch Project GrantsRoleSideSiteSodium ChlorideSolventsSulfurSystemTFF1 geneTestingTherapeuticValidationZinc Fingersatomic interactionsbasebiophysical techniquesdesigndriving forceengineering designexperimental studyhomeodomainhuman dataimprovedinorganic phosphateion dynamicsmacromoleculemolecular dynamicsmolecular recognitionphosphorodithioic acidprotein functionprotein structuresystems researchthree dimensional structuretranscription factor
项目摘要
DESCRIPTION (provided by applicant): Ion pairing is one of the most fundamental atomic interactions for biological macromolecules to execute their functions. Numerous three-dimensional structures of macromolecular complexes show the presence of ion pairs (also known as salt bridges) at functionally important sites, suggesting that ion pairs play significant roles in molecular association, recognition and catalysis. Crucial intermolecular ion pairs are also found in many protein-drug complexes. Thus, deeper knowledge of ion pairs can enable more successful macromolecular engineering and drug design for future human therapeutics. Toward this end, the current project brings together three research groups with complementary expertise to understand ion-pair dynamics at protein-DNA interfaces and their roles in protein-DNA association. Formation of ion pairs between protein and DNA along with the release of counterions is the major driving force for many protein-DNA association processes. The PI's group recently developed NMR methods for characterizing side-chain dynamics involving hydrogen bonds and ion pairs. The research in this project is designed to test our central hypothesis that the ion-pair dynamics is entropically important for protein-DNA association. Using NMR and other solution-biophysical methods together with computation and nucleic acid chemistry, the research team will study the dynamics of natural and unnatural ion pairs at molecular interfaces and their impact on protein-DNA association. The specific aims in this project are 1) to characterize the dynamics of ion pairs between protein and DNA; 2) to delineate motional changes of ionized groups in molecular recognition of DNA; and 3) to elucidate the mechanism by which oxygen-to-sulfur substitution in DNA phosphate enhances protein-DNA affinity. Using the DNA-binding domains of Egr-1, HoxD9, and Antp proteins as model systems, the research team will study the ion-pair dynamics and their roles in protein-DNA association for two major classes of eukaryotic transcription factors: zinc-finger (Egr-1) and homeodomain (HoxD9 and Antp) proteins. Comparison of data for human HoxD9 and fruit fly Antp homeodomains will also allow us to examine to what extent ion pair dynamics are conserved though evolution. The research team will also validate molecular dynamics force-field parameter sets by comparing the experimental and computational results on the ion-pair dynamics. This project will substantially advance knowledge of ion pairs in biological macromolecular systems. The new knowledge will facilitate engineering of proteins and nucleic acids for human therapeutics. Experiment-based validation of the force-field parameters relevant to ion pairs can lead to improvement of in silico screening of drugs involving ion pairs. Thus, a broad range of biomedical fields will benefit from this project.
描述(申请人提供):离子配对是生物大分子执行其功能的最基本的原子相互作用之一。许多大分子络合物的三维结构表明,离子对(也称为盐桥)存在于功能重要的位置,这表明离子对在分子缔合、识别和催化中发挥着重要作用。在许多蛋白质-药物复合体中也发现了关键的分子间离子对。因此,对离子对更深入的了解可以为未来的人类治疗提供更成功的大分子工程和药物设计。为此,目前的项目汇集了三个具有互补专业知识的研究小组,以了解蛋白质-DNA界面上的离子对动力学及其在蛋白质-DNA结合中的作用。蛋白质和DNA之间离子对的形成以及反离子的释放是许多蛋白质-DNA结合过程的主要驱动力。Pi‘s小组最近开发了核磁共振方法来表征涉及氢键和离子对的侧链动力学。这个项目的研究旨在检验我们的中心假设,即离子对动力学对蛋白质-DNA结合具有极大的重要性。研究小组将利用核磁共振和其他溶液生物物理方法,结合计算和核酸化学,研究分子界面上自然和非自然离子对的动力学及其对蛋白质-DNA结合的影响。本项目的具体目标是1)表征蛋白质与DNA之间的离子对动力学;2)描述DNA分子识别中电离基团的运动变化;3)阐明DNA磷酸中氧硫取代增强蛋白质-DNA亲和力的机制。研究小组将以Egr-1、HoxD9和ANTP蛋白的DNA结合域为模型系统,研究两类主要真核转录因子:锌指蛋白(Egr-1)和同源结构域蛋白(HoxD9和ANTP)的离子对动力学及其在蛋白质-DNA结合中的作用。对人类HoxD9和果蝇ANTP同源结构域的数据比较也将使我们能够检查离子对动力学在进化过程中保守到什么程度。研究小组还将通过比较离子对动力学的实验和计算结果来验证分子动力学力场参数集。该项目将极大地提高对生物大分子系统中离子对的认识。这一新知识将促进用于人类治疗的蛋白质和核酸工程。基于实验的与离子对相关的力场参数的验证可以改善涉及离子对的药物的电子筛选。因此,广泛的生物医学领域将从该项目中受益。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Physicochemical Properties of Ion Pairs of Biological Macromolecules.
生物大分子离子对的物理化学特性。
- DOI:10.3390/biom5042435
- 发表时间:2015-09-30
- 期刊:
- 影响因子:5.5
- 作者:Iwahara J;Esadze A;Zandarashvili L
- 通讯作者:Zandarashvili L
Positive and negative impacts of nonspecific sites during target location by a sequence-specific DNA-binding protein: origin of the optimal search at physiological ionic strength.
- DOI:10.1093/nar/gku418
- 发表时间:2014-06
- 期刊:
- 影响因子:14.9
- 作者:Esadze A;Kemme CA;Kolomeisky AB;Iwahara J
- 通讯作者:Iwahara J
Direct detection of lysine side chain NH3+ in protein-heparin complexes using NMR spectroscopy.
使用 NMR 光谱法直接检测蛋白质-肝素复合物中的赖氨酸侧链 NH3。
- DOI:10.1039/c7an01406f
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Sepuru,KrishnaMohan;Iwahara,Junji;Rajarathnam,Krishna
- 通讯作者:Rajarathnam,Krishna
Effective strategy to assign ¹H- ¹⁵N heteronuclear correlation NMR signals from lysine side-chain NH3₃⁺ groups of proteins at low temperature.
- DOI:10.1007/s10858-014-9854-y
- 发表时间:2014-09
- 期刊:
- 影响因子:2.7
- 作者:Esadze A;Zandarashvili L;Iwahara J
- 通讯作者:Iwahara J
Stereospecific Effects of Oxygen-to-Sulfur Substitution in DNA Phosphate on Ion Pair Dynamics and Protein-DNA Affinity.
- DOI:10.1002/cbic.201600265
- 发表时间:2016-09-02
- 期刊:
- 影响因子:3.2
- 作者:Dan Nguyen;Zandarashvili, Levani;White, Mark A.;Iwahara, Junji
- 通讯作者:Iwahara, Junji
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Junji Iwahara其他文献
Junji Iwahara的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Junji Iwahara', 18)}}的其他基金
Dynamics of DNA scanning and recognition by transcription factors
DNA扫描和转录因子识别的动力学
- 批准号:
9894339 - 财政年份:2019
- 资助金额:
$ 24万 - 项目类别:
Dynamics of DNA scanning and recognition by transcription factors
DNA扫描和转录因子识别的动力学
- 批准号:
10579748 - 财政年份:2019
- 资助金额:
$ 24万 - 项目类别:
Competitive interplay of neuronal transcription factors via DNA methylation
神经元转录因子通过 DNA 甲基化的竞争性相互作用
- 批准号:
9894858 - 财政年份:2019
- 资助金额:
$ 24万 - 项目类别:
Dynamics of DNA scanning and recognition by transcription factors
DNA扫描和转录因子识别的动力学
- 批准号:
10330567 - 财政年份:2019
- 资助金额:
$ 24万 - 项目类别:
Dynamics of DNA scanning and recognition by transcription factors
DNA扫描和转录因子识别的动力学
- 批准号:
10557921 - 财政年份:2019
- 资助金额:
$ 24万 - 项目类别:
Characterizing the ion-pair dynamics and their roles in protein-DNA association
表征离子对动力学及其在蛋白质-DNA 关联中的作用
- 批准号:
8632273 - 财政年份:2014
- 资助金额:
$ 24万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant














{{item.name}}会员




