The MEME suite of motif-based sequence analysis tools
基于基序的序列分析工具 MEME 套件
基本信息
- 批准号:9251869
- 负责人:
- 金额:$ 35.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-28 至 2018-09-09
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAlgorithmsAmino Acid MotifsAmino Acid SequenceBase SequenceBinding ProteinsBinding SitesBiologicalBiological ModelsCell physiologyCellsCharacteristicsCollectionComplexComputer softwareDNADNA SequenceDataData SetDatabasesDiseaseDisease modelEnsureEnzymesEvolutionGene ExpressionGenesGenomeGenomic DNAGenomicsGoalsIndividualKnowledgeLinuxMass Spectrum AnalysisMediatingMicroRNAsModelingMolecularMolecular BiologyMolecular EvolutionNatureOutputPaperPatternPeptide Signal SequencesPhosphorylationPhosphotransferasesPositioning AttributePost Translational Modification AnalysisPost-Translational Protein ProcessingProceduresProcessProteinsProteomicsRNARNA SequencesRNA SplicingResearch InfrastructureRunningScanningScientistSequence AnalysisSeriesSoftware EngineeringStatistical ModelsSystemTestingTimeWorkcell typechromatin immunoprecipitationcomputerized toolsdesignexperiencehuman diseaseimprovedinsightinteroperabilitymodel buildingmolecular scaleprotein foldingprotein structurepublic health relevancesoftware developmenttoolusabilityweb portal
项目摘要
DESCRIPTION (provided by applicant): The broad goal of this project is to develop and apply computational tools for detecting, modeling and understanding biologically important sequence patterns, called motifs, encoded in the genome, in RNA and in proteins. Sequence motifs carry much of the information essential to the correct functioning of cells. For ex- ample, motifs in genomic DNA contain information that helps to regulate gene expression. Sequence motifs in RNA encode splice junctions and regulatory information such as microRNA binding sites. At the protein level, sequence motifs may participate in enzymatic binding sites, provide anchors for a protein structure or mediate posttranslational modifications such as phosphorylation by kinases. We model biological sequence patterns using statistical models that capture local sequence patterns while allowing for naturally occurring variability. Since 2011 more than 33,000 unique users have accessed the MEME Suite web portal, and the number of users has been steadily growing. As of June 28, 2013, the papers describing the MEME Suite have been cited 6827 times, according to Google scholar. In the proposed project, we aim to improve the core algorithms in the MEME Suite, add significant new functionality to the Suite, and improve the robustness, reliability and usability of software. In particular, we will significantly enhance the
core motif discovery algorithm to scale to larger data sets, to identify new types of motifs, and t provide more accurate statistical confidence estimates. We will add functionality to the Suite to allow users to identify and characterize motifs associated with post-translational protein modifications. We will also carry out a series of software engineering and usability improvements that will greatly enhance the overall user experience. Our software can be locally installed or run remotely through our web portal to perform a diverse set of analyses on large, complex genomic and proteomic data sets. It is in widespread use by scientists around the world. We aim to continue to maintain and develop this software, facilitating scientific discovery and leading to insights into a wide spectrum of fundamental processes in molecular biology and human disease.
描述(由申请人提供):该项目的广泛目标是开发和应用计算工具,用于检测、建模和理解生物学上重要的序列模式,称为基序,编码在基因组、RNA和蛋白质中。序列基序携带了细胞正常运作所必需的大部分信息。例如,基因组DNA中的基序包含有助于调节基因表达的信息。RNA中的序列基序编码剪接点和调控信息,如microRNA结合位点。在蛋白质水平,序列基序可以参与酶结合位点,为蛋白质结构提供锚定或介导翻译后修饰,如激酶磷酸化。我们使用统计模型来模拟生物序列模式,该模型捕获局部序列模式,同时允许自然发生的变异性。自2011年以来,超过33,000名独立用户访问了MEME Suite门户网站,用户数量一直在稳步增长。截至2013年6月28日,描述MEME套件的论文已经被引用了6827次,根据谷歌学者。 在拟议的项目中,我们的目标是改进MEME套件中的核心算法,为套件添加重要的新功能,并提高软件的鲁棒性,可靠性和可用性。特别是,我们将大大加强
核心基序发现算法可以扩展到更大的数据集,识别新类型的基序,并提供更准确的统计置信度估计。我们将向套件中添加功能,以允许用户识别和表征与翻译后蛋白质修饰相关的基序。我们还将进行一系列软件工程和可用性改进,这将大大提高整体用户体验。 我们的软件可以在本地安装或通过我们的门户网站远程运行,对大型复杂的基因组和蛋白质组数据集进行各种分析。它被世界各地的科学家广泛使用。我们的目标是继续维护和开发该软件,促进科学发现,并导致深入了解分子生物学和人类疾病的广泛基础过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy L Bailey其他文献
Timothy L Bailey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy L Bailey', 18)}}的其他基金
The MEME suite of motif-based sequence analysis tools
基于基序的序列分析工具 MEME 套件
- 批准号:
9040997 - 财政年份:2009
- 资助金额:
$ 35.66万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 35.66万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 35.66万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 35.66万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 35.66万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 35.66万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 35.66万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 35.66万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 35.66万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 35.66万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 35.66万 - 项目类别:
Continuing Grant