Identifying stabilizers of p53 using pocket complementarity
利用口袋互补性识别 p53 的稳定剂
基本信息
- 批准号:9357613
- 负责人:
- 金额:$ 35.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-26 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlzheimer&aposs DiseaseAmyloidosisAntibodiesAntineoplastic AgentsBindingBiochemicalBiological AssayCancer BiologyCancer cell lineCell LineCellsComplementComplexComputer SimulationComputing MethodologiesCoupledCrystallizationDNA BindingDevelopmentDialysis procedureDiseaseFeedbackGenetic TranscriptionGoalsHumanIn VitroLibrariesMalignant NeoplasmsMapsMethodologyMethodsMolecular ConformationMonitorMutateMutationNon-Insulin-Dependent Diabetes MellitusPharmaceutical ChemistryPhysiologic pulsePhysiologicalPositioning AttributeProtein p53ProteinsProteolysisResearchResearch PersonnelSampling BiasesShapesSiteStructureSurfaceTP53 geneTestingTherapeuticThermodynamicsTumor Suppressor ProteinsValidationX-Ray Crystallographybasebiophysical techniquescomputer studiesdesignexperiencefunctional restorationimprovedin vivoinnovationloss of function mutationmutantnovelpublic health relevancescaffoldscreeningsmall moleculetoolvirtual
项目摘要
DESCRIPTION (provided by applicant): Identifying stabilizers of p53 using pocket complementarity. The tumor suppressor protein p53 is mutated or deleted in more than half of human cancers. The most frequently occurring of these loss-of-function mutations are localized to the p53 "core domain," but do not involve surface residues directly responsible for function. Rather, these point mutants reduce the thermodynamic stability of this marginally stable protein, such that cellular activity is diminished because an insufficient amount of p53 is correctly folded The goal of this proposal is to identify compounds that potently bind and stabilize correctly folded p53. We expect that stabilization through this mechanism will restore activity to this most frequently occurring class of p53 point mutants, and further will restore activity to these destabilized mutants - regardless of precisely which mutation is responsible for the underlying loss of protein stability. Already we have identified several stabilizing compounds from a small pilot screen, and we find that these compounds can restore transcriptional activity in cell lines harboring destabilized mutants of p53. Our central hypothesis is that by extending the scope of our computational studies and optimizing the resulting hit compounds through medicinal chemistry, we will identify compounds that act even more potently. We propose to meet this objective through pursuit of the following specific aims: 1) Use cutting-edge computational methods to identify compounds that bind to p53. 2) Test predicted hits in vitro using direct stability assays. 3) Optimize validated hits using structure-guided medicinal chemistry. Conventional approaches to identify compounds that stabilize p53 by binding to new surface sites might entail structure-based virtual screening, coupled with biochemical screening of the predicted hits. Each of these approaches would be expected to encounter particular hurdles when applied to this problem: the primary innovations in the proposed research lie in our use of newly-developed tools from the Karanicolas and Fisher labs to address each of these specific challenges. Using these tools we expect to identify a set of novel p53 "re-activators", which in turn may represent a starting point for developing a new class of broad-spectrum cancer therapeutics. We further expect that refinement of our screening platform through these studies of p53 will additionally enhance its utility for identifying re-activators of other select proteinsthat are frequently deactivated in human cancers by destabilizing mutations.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Karanicolas其他文献
John Karanicolas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Karanicolas', 18)}}的其他基金
Designing selective kinase inhibitors via deep learning
通过深度学习设计选择性激酶抑制剂
- 批准号:
10366318 - 财政年份:2022
- 资助金额:
$ 35.01万 - 项目类别:
Refolding Mutant p53: A Strategy for Cancer Prevention in Li-Fraumeni Syndrome
重折叠突变体 p53:Li-Fraumeni 综合征癌症预防策略
- 批准号:
10505614 - 财政年份:2022
- 资助金额:
$ 35.01万 - 项目类别:
Designing selective kinase inhibitors via deep learning
通过深度学习设计选择性激酶抑制剂
- 批准号:
10798523 - 财政年份:2022
- 资助金额:
$ 35.01万 - 项目类别:
Designing selective kinase inhibitors via deep learning
通过深度学习设计选择性激酶抑制剂
- 批准号:
10552030 - 财政年份:2022
- 资助金额:
$ 35.01万 - 项目类别:
Robust rational design of chemical tools to inhibit RNA-binding proteins
抑制 RNA 结合蛋白的化学工具的稳健合理设计
- 批准号:
9290770 - 财政年份:2017
- 资助金额:
$ 35.01万 - 项目类别:
Robust rational design of chemical tools to inhibit RNA-binding proteins
抑制 RNA 结合蛋白的化学工具的稳健合理设计
- 批准号:
9978889 - 财政年份:2017
- 资助金额:
$ 35.01万 - 项目类别:
Robust rational design of chemical tools to inhibit RNA-binding proteins
抑制 RNA 结合蛋白的化学工具的稳健合理设计
- 批准号:
9751928 - 财政年份:2017
- 资助金额:
$ 35.01万 - 项目类别:
Identifying inhibitors of protein interactions using pocket optimization
使用口袋优化识别蛋白质相互作用的抑制剂
- 批准号:
8826142 - 财政年份:2012
- 资助金额:
$ 35.01万 - 项目类别:
Identifying inhibitors of protein interactions using pocket optimization
使用口袋优化识别蛋白质相互作用的抑制剂
- 批准号:
8448099 - 财政年份:2012
- 资助金额:
$ 35.01万 - 项目类别:
Identifying inhibitors of protein interactions using pocket optimization
使用口袋优化识别蛋白质相互作用的抑制剂
- 批准号:
8304731 - 财政年份:2012
- 资助金额:
$ 35.01万 - 项目类别: