Control of cargo distributions by microtubule motor physical interactions with cargo, cytoplasm and MAPs
通过微管运动与货物、细胞质和 MAP 的物理相互作用控制货物分布
基本信息
- 批准号:9289581
- 负责人:
- 金额:$ 34.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-05-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffinityAlpha CellAlzheimer&aposs DiseaseAxonBehaviorBiological AssayCellsCerealsChargeCodeComputer SimulationCytoplasmDataDimensionsDiseaseDynein ATPaseEnvironmentExhibitsFamilyGoalsHeterogeneityImpairmentIntracellular TransportKinesinKineticsLeadLengthLipidsMAPT geneMapsMeasuresMechanicsMethodsMicrotubule-Associated ProteinsMicrotubulesModelingMolecularMotorMotor PathwaysMutationNatureNeuronsPathologicPhosphorylationPropertyRNARNA SplicingRegulationRegulatory PathwayResearchRheologySiteSorting - Cell MovementSpecificityStructureSurfaceSystemTauopathiesTestingTherapeuticVariantViscosityWorkbasecombatcombinatorialdensitydynactinin vivolaser tweezermechanical propertiesmolecular scalemutantnovelnovel strategiesphysical propertypublic health relevanceresponsesimulationtau Proteinstau dysfunctionviscoelasticity
项目摘要
PROJECT SUMMARY
The major open question in microtubule motor research is to determine how cargo-scale
motor behavior is regulated (at the molecular scale) to orchestrate control of a cell's
spatial organization (on the scale of 10-100 microns), simultaneously for all of motor-
driven intracellular traffic. This involves the microtubule associated protein Tau, the
hallmark of Tauopathy diseases. Challenges arise because of the combinatorial
complexity of Tau variants and the multi-scale nature of the question – two challenges
for which computational modeling is particularly well suited to confront. In Aim 1, we will
develop a model to simulate motor-MAP kinetics and how these lead to cargo transport.
We hypothesize that a microtubule adorned with MAPs and other molecules can
selectively influence cargo localization depending on the cargo's size and mechanical
deformability. This selectivity can be understood in terms of the MAP's size, mechanical
properties and abundance, which together provide a traffic coding system that is mis-
regulated in disease. We will develop a computational model and simulate motor
transport at the cargo-scale to explore specificity and multiplexing by MT-cargo spacing
control. A key missing parameter is the motor's attachment rates, which have been so
far too technically challenging to measure directly and will therefore require a novel
experimental-theoretical assay. We will then simulate motor transport in a 1-dimensional
array of microtubules to identify cargo-scale parameters that sensitively lead to cell-scale
localization, using known spatial heterogeneity of, e.g., Tau across axons. In Aim 2, we
will explore the spacing-based aspect of motor modulators. We hypothesize that many
transport-regulating molecules operate in part by tuning the spacing (mean and variance
of distance) between the microtubule and cargo. Spacing-based regulation endows the
system with control properties not present in other modes of regulation. We will develop
an optical tweezer-based assay to quantify the modulation of transport parameters by
tuning MT-cargo spacing, and a simulation-based inference method to measure spacing
for arbitrary MAPs. We will specifically work to understand the regulatory mechanism of
highly-structured molecules such as Dynactin and Rabs, and highly-disordered
molecules such as Tau and MAP2. In Aim 3, we will explore the effects of the cargo's
and cell's local rheology. We hypothesize that both the internal dynamics of surface-
bound molecules on the cargo, and the cell's local rheology influence transport
properties. This provides the system with a natural cargo sorting mechanism. Using our
simulation, we will quantify the influence of the cargo's internal viscosity (low for
vesicular cargo, intermediate for lipid droplets, and high for rigid cargo like RNA) and
how this interacts with the viscoelasticity of the cytoplasm.
项目摘要
微管运动研究中的主要问题是确定货物规模如何
运动行为受到调节(在分子尺度上),以协调控制细胞的运动,
空间组织(在10-100微米的尺度上),同时用于所有的运动-
驱动的细胞内交通。这涉及微管相关蛋白Tau,
Tauopathy疾病的标志。挑战的出现是因为
Tau变体的复杂性和问题的多尺度性质-两个挑战
计算建模特别适合于面对这些问题。在目标1中,我们
开发一个模型来模拟电机MAP动力学以及这些如何导致货物运输。
我们假设,微管与地图和其他分子装饰,
根据货物的尺寸和机械性能选择性地影响货物定位
变形性这种选择性可以根据MAP的尺寸、机械性能和机械性能来理解。
属性和丰度,它们一起提供了一个交通编码系统,这是错误的,
在疾病中调节。我们将开发一个计算模型并模拟电机
货物规模的运输,以探索MT货物间距的特异性和多路复用
控制一个关键的缺失参数是电机的附着率,这一直是如此
技术上太具有挑战性,无法直接测量,因此需要一种新的
实验-理论分析然后,我们将在一维模型中模拟运动运输。
微管阵列用于识别敏感地导致细胞规模的货物规模参数
定位,使用已知的空间异质性,例如,Tau穿过轴突。在目标2中,
将探索基于空间的运动调节器。我们假设,
转运调节分子部分地通过调节间隔(平均值和方差)来运作
(1)微管与货物之间的距离。基于空间的监管赋予了
具有其他调节模式中不存在的控制特性的系统。我们将开发
一种基于光镊的测定,通过以下方式量化传输参数的调制:
调整MT货物间距,以及基于模拟的推理方法来测量间距
对于任意映射。我们将具体工作,以了解监管机制,
高度结构化的分子,如Dynactin和Rabs,以及高度无序的
Tau和MAP 2等分子。在目标3中,我们将探讨货物的影响,
和细胞局部流变学。我们假设表面的内部动力学-
货物上的结合分子,以及细胞的局部流变学影响运输
特性.这为系统提供了自然的货物分类机制。使用我们
模拟,我们将量化货物的内部粘度的影响(低,
囊泡货物,脂质液滴的中间,和刚性货物如RNA的高),
这是如何与细胞质的粘弹性相互作用的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jun Allard其他文献
Jun Allard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jun Allard', 18)}}的其他基金
Control of cargo distributions by microtubule motor physical interactions with cargo, cytoplasm and MAPs
通过微管运动与货物、细胞质和 MAP 的物理相互作用控制货物分布
- 批准号:
9903391 - 财政年份:2017
- 资助金额:
$ 34.76万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 34.76万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 34.76万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 34.76万 - 项目类别:
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 34.76万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 34.76万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 34.76万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 34.76万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 34.76万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 34.76万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 34.76万 - 项目类别:
Continuing Grant