Targeting glycocalyx-mediated mechanisms of tumor metastasis
靶向糖萼介导的肿瘤转移机制
基本信息
- 批准号:9238929
- 负责人:
- 金额:$ 47.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-12-01 至 2021-11-30
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAnimal ModelAutopsyBlood VesselsBrainCD44 AntigensCD44 geneCancer PatientCandidate Disease GeneCell Adhesion MoleculesCell LineCell Migration InductionCell surfaceCellsClinicalCore ProteinCytotoxic ChemotherapyDetectionDiseaseDisease ProgressionDisseminated Malignant NeoplasmDistantDistant MetastasisDrug TargetingExcisionGene SilencingGlycocalyxGlycosaminoglycansGlypicanGoalsHDAC1 geneHeparitin SulfateHistone DeacetylaseHomeostasisHyaluronic AcidImageImplantIn VitroIndividualIntegrinsIntercellular FluidInterventionIntestinesIntra-abdominalInvadedKidneyLateralLeadLigationLinkLiquid substanceLiverLungMAP Kinase GeneMalignant NeoplasmsMatrix MetalloproteinasesMechanicsMediatingMetastasis InductionMetastatic Neoplasm to the KidneyMetastatic Renal Cell CancerMetastatic toMethodsMicrometastasisMolecularMolecular ProfilingMonitorMusNeoplasm MetastasisOrganOutcomePTK2 genePathway interactionsPatientsPenetrationPharmaceutical PreparationsPharmacologyPhenotypePre-Clinical ModelPrimary NeoplasmRenal Cell CarcinomaRenal carcinomaResolutionRoleSignal PathwaySignal TransductionSiteSpleenStructureStructure of renal veinSurfaceSystemTestingTissuesTracerTumor Cell InvasionTumor InitiatorsTumor TissueUltrasonographyUp-RegulationUreterWorkbaseblood perfusioncancer cellcell motilityeffective therapyglomerular filtrationimprovedin vivoin vivo Modelinhibitor/antagonistinterstitialknock-downmechanical forcemechanotransductionmigrationmortalitymouse modelnovel strategiesnovel therapeutic interventionpreventproteoglycan core proteinreceptorresponsesyndecantherapeutic targettumortumor growthtumor microenvironment
项目摘要
The ability of cancer cells to migrate away from the primary tumor and colonize distant organs is the ultimate
cause of mortality in cancer. Although many of the molecular and adhesion pathways have been identified,
there is still no effective strategy for limiting metastasis in patients. This is in large part due to our lack of
understanding of the signals that initiate cell invasion into the surrounding tissue and blood vessels. In previous
work, we showed that mechanical forces from flowing interstitial fluid cause profound phenotypic changes in
cancer cells. These forces are transmitted by the cell glycocalyx and influence cell migration, MMP activity and
adhesion molecule expression. We propose that the glycocalyx– by virtue of its role in mechanotransduction—
represents a new and promising target for inhibiting cancer migration and metastasis. In this project, we will
use a tightly-integrated combination of in vitro analyses and in vivo models to determine the components and
pathways responsible for mechanically-induced cell invasion, and then target these mechanisms in a mouse
model of renal carcinoma. Aim 1a will use gene silencing to remove specific components of the glycocalyx to
identify key structures involved in flow-induced activation of metastasis, and Aim 1b will examine the
intracellular signaling pathways downstream of the glycocalyx that might be targeted to inhibit invasion. In Aim
2, we will use a mouse model of renal carcinoma to determine how the glycocalyx components contribute to
local intravasation into the vasculature (Aim 2a) and distant metastasis (Aim 2b). With the key glycocalyx
components and targets identified, we will then use pharmacological interventions to block metastasis (Aim
2c). Finally, we will alter interstitial flow in an orthotopic mouse renal carcinoma to demonstrate the induction of
metastasis by flow in the in vivo setting (Aim 3). These studies have the potential to uncover the fundamental
mechanisms that initiate tumor metastasis, and will open the door to new therapeutic strategies that exploit
mechanobiological signaling pathways.
癌细胞从原发肿瘤转移到远处器官的能力是终极的
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LANCE L MUNN其他文献
LANCE L MUNN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LANCE L MUNN', 18)}}的其他基金
Systems Biology of Antigen and T-Cell Transport in Cancer Immunotherapy
癌症免疫治疗中抗原和 T 细胞运输的系统生物学
- 批准号:
10751192 - 财政年份:2023
- 资助金额:
$ 47.17万 - 项目类别:
Targeting glycocalyx-mediated mechanisms of tumor metastasis
靶向糖萼介导的肿瘤转移机制
- 批准号:
10053711 - 财政年份:2016
- 资助金额:
$ 47.17万 - 项目类别:
Encouraging anastomosis of engrafted vascular networks
促进移植血管网络的吻合
- 批准号:
8440749 - 财政年份:2012
- 资助金额:
$ 47.17万 - 项目类别:
Encouraging anastomosis of engrafted vascular networks
促进移植血管网络的吻合
- 批准号:
8618916 - 财政年份:2012
- 资助金额:
$ 47.17万 - 项目类别:
Encouraging anastomosis of engrafted vascular networks
促进移植血管网络的吻合
- 批准号:
8236426 - 财政年份:2012
- 资助金额:
$ 47.17万 - 项目类别:
Encouraging anastomosis of engrafted vascular networks
促进移植血管网络的吻合
- 批准号:
8821655 - 财政年份:2012
- 资助金额:
$ 47.17万 - 项目类别:
Flow-based remodeling and function of tumor vasculature
基于流的肿瘤脉管系统重塑和功能
- 批准号:
8064674 - 财政年份:2010
- 资助金额:
$ 47.17万 - 项目类别:
Flow-based remodeling and function of tumor vasculature
基于流的肿瘤脉管系统重塑和功能
- 批准号:
8460445 - 财政年份:2010
- 资助金额:
$ 47.17万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 47.17万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 47.17万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 47.17万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 47.17万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 47.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 47.17万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 47.17万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 47.17万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 47.17万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 47.17万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




