Rapid Protease Profiling with a Multiplex Electronic Method for Detection of Metastatic Triple-Negative Breast Cancer

使用多重电子方法快速进行蛋白酶分析,检测转移性三阴性乳腺癌

基本信息

  • 批准号:
    9355398
  • 负责人:
  • 金额:
    $ 40.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

Early diagnosis via cost-effective screening of high risk subpopulation followed by effective treatments is the key for saving many lives of cancer patients. Proteases overexpressed in cancer cells and secreted into circulation have been used as drug targets for the development of protease inhibitors as well as biomarkers for diagnosis and therapeutic monitoring. In this project, a multi-discipline team intends to develop a nanoelectronic chip for rapid profiling activity of six proteases that are overexpressed in metastatic triple-negative breast cancer (TNBC) patients and use this information to identify signatures in breast cancer progression and therapeutic responsiveness. The team includes (1) Dr. Jun Li (PI, nanotechnology and biosensor, Kansas State University); (2) Dr. Duy H. Hua (synthetic medicinal chemistry, Kansas State University); (3) Dr. Meyya Meyyappan (nanotechnology and nanodevices, NASA Ames Research Center); and (4) Dr. Priyanka Sharma (cancer clinical research, the University of Kansas Medical Center). This project focuses on developing the PI’s previously demonstrated electronic device based on carbon nanofiber nanoelectrode arrays for simultaneous detection of the activity of six overexpressed proteases in TNBC, including cathepsin B, MMP-2, MMP-9, ADAM-10, ADAM- 17 and uPA. Hexapeptide substrates highly specific to the aforementioned proteases are covalently attached to the tips of embedded carbon nanofibers in a multiplexed electronic chip. The distal end of the hexapeptides is attached with an electrochemical reporter. Introducing the TNBC patient samples containing these proteases results in cleavage of corresponding hexapeptides, thereby releasing the electrochemical reporter and leading to an exponential decrease of the electrochemical signal. The protease activity can be derived from the decay time constant of the kinetic curves. This extremely sensitive biosensor technology will be fabricated into independently addressed 3x3 arrays and packaged in disposable fluidic cartridges. Using 18 hexapeptide substrates (3 for each protease) attached to different nanoelectrode arrays in two 3x3 electronic chips, reliable proteolytic activity profile of the aforementioned six proteases in TNBC can be quickly measured, which cannot be done with current technologies. This technique should greatly accelerate the speed of protease profiling in complex samples and facilitate detection of invasive TNBC from other breast cancers in its early stage. The change of the protease activity profile will be monitored and correlate it with the longitudinal cancer treatment responses.
通过高成本效益的筛查进行早期诊断,然后进行有效的筛查

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JUN LI其他文献

JUN LI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JUN LI', 18)}}的其他基金

Myelin Junction Therapy in Peripheral Neuropathies
周围神经病的髓磷脂连接治疗
  • 批准号:
    10735282
  • 财政年份:
    2020
  • 资助金额:
    $ 40.01万
  • 项目类别:
Therapeutic Development in Segmental Demyelination
节段性脱髓鞘的治疗进展
  • 批准号:
    9277192
  • 财政年份:
    2016
  • 资助金额:
    $ 40.01万
  • 项目类别:
Therapeutic Development in Segmental Demyelination
节段性脱髓鞘的治疗进展
  • 批准号:
    10062791
  • 财政年份:
    2016
  • 资助金额:
    $ 40.01万
  • 项目类别:
Therapeutic Development in Segmental Demyelination
节段性脱髓鞘的治疗进展
  • 批准号:
    9137061
  • 财政年份:
    2016
  • 资助金额:
    $ 40.01万
  • 项目类别:
IGF::OT::IGF - IND ENABLING DEVELOPMENT OF NANOGMP: TARGETED
IGF::OT::IGF - IND 促进 NANOGMP 的开发:有针对性
  • 批准号:
    8857610
  • 财政年份:
    2014
  • 资助金额:
    $ 40.01万
  • 项目类别:
SVIP and CMT1A
SVIP 和 CMT1A
  • 批准号:
    8426333
  • 财政年份:
    2012
  • 资助金额:
    $ 40.01万
  • 项目类别:
SVIP and CMT1A
SVIP 和 CMT1A
  • 批准号:
    8534314
  • 财政年份:
    2012
  • 资助金额:
    $ 40.01万
  • 项目类别:
Nanoelectrode Array Based Electronic Biosensors for Rapid Profiling of Cancerous
基于纳米电极阵列的电子生物传感器,用于快速分析癌症
  • 批准号:
    8101546
  • 财政年份:
    2011
  • 资助金额:
    $ 40.01万
  • 项目类别:
CONDUCTION BLOCK IN HNPP
HNPP 中的导电块
  • 批准号:
    8361939
  • 财政年份:
    2011
  • 资助金额:
    $ 40.01万
  • 项目类别:
Pathophysiology of Conduction Block in HNPP.
HNPP 传导阻滞的病理生理学。
  • 批准号:
    8608012
  • 财政年份:
    2010
  • 资助金额:
    $ 40.01万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了