Harnessing "omics": A Systems Biology approach to discovery of biological pathways in placental development and parturition

利用“组学”:系统生物学方法发现胎盘发育和分娩的生物途径

基本信息

  • 批准号:
    9302935
  • 负责人:
  • 金额:
    $ 66.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-03-10 至 2022-02-28
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY  Our  goal  in  this  proposal  is  to  identify  biological  networks  involved  in  synchronizing  placental  growth  and  maturity. To accomplish this goal, we have established a collaborative effort between the Center for Prevention  of  Preterm  Birth  at  Cincinnati  Children’s  Hospital  Medical  Center  (CCHMC)  and  the  Institute  for  Systems  Biology (ISB) in Seattle to conduct a systems level analysis of “omics” data. Perturbed growth and maturity can  lead  to  placental  insufficiency,  which  underlies  a  significant  proportion  of  adverse  pregnancy  outcomes,  such  as preterm birth.  A paucity of knowledge regarding normal placental development and maturity greatly hinders  any  study  of  placental  insufficiency.  Placental  growth  and  development  occurs  throughout  gestation  and  reaches maturity at term. Therefore, it is critical to identify the networks involved and to assess them over the  length of gestation. Our central hypothesis is that key biological networks vital to placental growth and  maturity  can  be  identified  through  the  intersection  of  transcriptomic,  proteomic,  and  metabolomics  data  from  term  and  preterm  placentae.  Furthermore,  utilizing  longitudinal  proteomics  and  metabolomics  data,  we  can  determine  how  those  pathways  change  over  gestation  and  differ  between  normal  and  preterm  placentae. We will test this hypothesis through the following aims:   Aim  1:  Identification  of  key  gene  and  metabolite  signatures  involved  in  placental  development  by  analyzing  longitudinal  “omics”  data.  Using  publically  available  transcriptomic  data,  we  will  generate  a  molecular profile of expressed genes in placental development throughout gestation.  We will also determine  the  placental  secretome  and  identify  biomarker  signatures  that  appear  in  maternal  urine  that  reflect  placental  maturation.   Aim  2:  Identification  of  molecular  pathways  associated  with  placental  maturity.  We  will  utilize  network  topology algorithms to identify changes in molecular pathways in preterm and term placentae. These data will  be  combined  with  publically  available  data  to  identify  molecular  pathways  and  genes  within  those  pathways  that differ between term and preterm placentae to provide insight into placental maturity.   Aim 3: Generation of a placenta-­specific transcriptional network for identifying regulatory mechanisms  involved  in  placental  maturity.  We  will  construct  genome-­scale,  tissue  specific  models  of  placental  transcriptional  regulatory  networks  using  our  newly-­developed  Transcriptional  Regulatory  Network  Analysis  (TRENA)  approach,  which  leverages  a  wealth  of  information  from  the  NIH’s  ENCODE  project.  We  will  characterize  which  transcriptional  regulators  are  most  likely  responsible  for  perturbed  gene  expression,  their  signaling pathways and downstream targets. Previously unknown or understudied networks or genes identified  targeted for further analyses in placental growth and maturity and future prospective clinical studies.
项目摘要 我们的目标是确定参与同步胎盘生长的生物网络, 为了实现这一目标,我们建立了一个合作的努力, 辛辛那提儿童医院医疗中心(CCHMC)和系统研究所 在西雅图的生物学(ISB)进行“组学”数据的系统级分析。 导致胎盘功能不全,这是很大一部分不良妊娠结局的基础, 由于缺乏有关胎盘正常发育和成熟的知识, 任何关于胎盘功能不全的研究。胎盘的生长和发育发生在整个妊娠期, 因此,关键是要确定所涉及的网络,并在整个过程中对其进行评估。 我们的中心假设是,对胎盘生长至关重要的关键生物网络, 成熟可以通过转录组学、蛋白质组学和代谢组学的交叉来鉴定 数据来自足月和早产胎盘。此外,利用纵向蛋白质组学和代谢组学 数据,我们可以确定这些途径如何在妊娠期间变化,以及正常和早产之间的差异 胎盘。我们将通过以下目标来检验这一假设: 目的1:通过筛选胎盘发育中的关键基因和代谢产物, 分析纵向“组学”数据。使用可获得的转录组学数据,我们将生成一个 在整个妊娠期胎盘发育中表达基因的分子谱。我们还将确定 胎盘分泌组和鉴定出现在母体尿中反映胎盘分泌的生物标记物特征 成熟 目的2:确定与胎盘成熟相关的分子通路。我们将利用网络 拓扑算法来识别早产和足月胎盘中分子通路的变化。这些数据将 与实验室可用数据相结合,以确定分子途径和这些途径中的基因 以提供对胎盘成熟度的了解。 目的3:建立胎盘特异性转录网络,以确定调控机制 我们将构建基因组规模的胎盘组织特异性模型, 转录调控网络使用我们新开发的转录调控网络分析 (TRENA)方法,该方法利用了NIH ENCODE项目的丰富信息。 表征哪些转录调节因子最有可能负责干扰基因表达,其 信号通路和下游靶点。以前未知或研究不足的网络或基因鉴定 用于胎盘生长和成熟的进一步分析以及未来的前瞻性临床研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Louis J Muglia其他文献

Genetic Approaches to Hypothalamic-Pituitary-Adrenal Axis Regulation
下丘脑-垂体-肾上腺轴调节的遗传学方法
  • DOI:
    10.1038/npp.2015.215
  • 发表时间:
    2015-07-20
  • 期刊:
  • 影响因子:
    7.100
  • 作者:
    Melinda G Arnett;Lisa M Muglia;Gloria Laryea;Louis J Muglia
  • 通讯作者:
    Louis J Muglia
Insights Into Parturition Biology From Genetically Altered Mice
从转基因小鼠中洞察分娩生物学
  • DOI:
    10.1203/pdr.0b013e31818718d2
  • 发表时间:
    2008-12-01
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Christine K Ratajczak;Louis J Muglia
  • 通讯作者:
    Louis J Muglia
A population-based study of race-specific risk for placental abruption
  • DOI:
    10.1186/1471-2393-8-43
  • 发表时间:
    2008-09-12
  • 期刊:
  • 影响因子:
    2.700
  • 作者:
    Tammy T Shen;Emily A DeFranco;David M Stamilio;Jen Jen Chang;Louis J Muglia
  • 通讯作者:
    Louis J Muglia

Louis J Muglia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Louis J Muglia', 18)}}的其他基金

AMYGDALA GLUCOCORTICOID RECEPTOR FUNCTION IN STRESS
压力下杏仁核糖皮质激素受体的功能
  • 批准号:
    7578658
  • 财政年份:
    2009
  • 资助金额:
    $ 66.81万
  • 项目类别:
AMYGDALA GLUCOCORTICOID RECEPTOR FUNCTION IN STRESS
压力下杏仁核糖皮质激素受体的功能
  • 批准号:
    8402381
  • 财政年份:
    2009
  • 资助金额:
    $ 66.81万
  • 项目类别:
AMYGDALA GLUCOCORTICOID RECEPTOR FUNCTION IN STRESS
压力下杏仁核糖皮质激素受体的功能
  • 批准号:
    8011545
  • 财政年份:
    2009
  • 资助金额:
    $ 66.81万
  • 项目类别:
AMYGDALA GLUCOCORTICOID RECEPTOR FUNCTION IN STRESS
压力下杏仁核糖皮质激素受体的功能
  • 批准号:
    8204986
  • 财政年份:
    2009
  • 资助金额:
    $ 66.81万
  • 项目类别:
AMYGDALA GLUCOCORTICOID RECEPTOR FUNCTION IN STRESS
压力下杏仁核糖皮质激素受体的功能
  • 批准号:
    7769911
  • 财政年份:
    2009
  • 资助金额:
    $ 66.81万
  • 项目类别:
Diabetes Research and Training Center
糖尿病研究与培训中心
  • 批准号:
    7509144
  • 财政年份:
    2006
  • 资助金额:
    $ 66.81万
  • 项目类别:
THE GENETIC EPIDEMIOLOGY OF INHERITED ABNORMALITIES OF PARTURITION
遗传性分娩异常的遗传流行病学
  • 批准号:
    7377216
  • 财政年份:
    2006
  • 资助金额:
    $ 66.81万
  • 项目类别:
Diabetes Research and Training Center
糖尿病研究与培训中心
  • 批准号:
    7509135
  • 财政年份:
    2006
  • 资助金额:
    $ 66.81万
  • 项目类别:
THE GENETIC EPIDEMIOLOGY OF INHERITED ABNORMALITIES OF PARTURITION
遗传性分娩异常的遗传流行病学
  • 批准号:
    7198733
  • 财政年份:
    2005
  • 资助金额:
    $ 66.81万
  • 项目类别:
Glucocorticoid Receptor function in Thymocytes
胸腺细胞中的糖皮质激素受体功能
  • 批准号:
    7031653
  • 财政年份:
    2003
  • 资助金额:
    $ 66.81万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 66.81万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 66.81万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 66.81万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 66.81万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 66.81万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 66.81万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 66.81万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 66.81万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 66.81万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 66.81万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了