Machine Learning and Personalized Prognosis for Depression Treatment
抑郁症治疗的机器学习和个性化预后
基本信息
- 批准号:9168157
- 负责人:
- 金额:$ 23.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:AdvocateAlgorithmsCitalopramClinicalClinical TrialsCoinComplexDataData SetDatabasesDecision TreesDevelopmentGoalsHealthInternetInterventionLogistic RegressionsMachine LearningMeasuresMental DepressionMental HealthMethodsModelingMulti-Institutional Clinical TrialNoiseOnline SystemsPatientsPharmaceutical PreparationsProbabilityPublic HealthRecommendationSample SizeSamplingSelection for TreatmentsStatistical MethodsSymptomsSystemTechniquesTestingTrainingTreatment CostTreatment EfficacyTreatment outcomeUnited StatesUnited States National Institutes of HealthUpdateValidationabstractingbaseclinical practiceeffective therapyhealth care availabilityimprovedinformation modellearning strategynoveloutcome forecastpersonalized medicineprecision medicinepredicting responsepsychologicresponsesuccesstreatment response
项目摘要
Abstract
Depression treatment is effective for approximately 50-60% of patients who receive treatment, but the
probability of a successful response is typically unknown before treatment begins. As a result, depression
treatment is routinely delivered in a trial-and-error fashion until a satisfactory response is achieved. Our
objective is to provide a personalized prognosis by applying ensemble machine learning techniques to discover
novel, non-linear combinations of multiple weak predictors that collectively yield accurate predictions of
treatment outcome. This statistical approach considers many prediction variables simultaneously and
iteratively constructs a complex prediction model that often dramatically outperforms traditional statistical
methods. Aim 1 is to apply stochastic gradient boosted decision trees to predict response to citalopram using
archival data from the STAR*D clinical trial. In preliminary analyses, we randomly selected 1223 patients to
train the model and another 407 patients to independently test the model (a 75-25 split), with tuning
parameters selected by cross-validation to minimize log-loss. The resulting prediction on the independent test
sample was superior to the no-information rate (p < 0.001), with an overall predictive accuracy of 66%.
Although this level of prediction is significantly better than a no information model, we plan to improve the
model's prognostication by 1) adding features that capture the “pharmacological noise” of concurrent (non-
study) medication use and 2) updating model predictions based on early signs of response. Aim 2 is to use a
similar machine learning approach to examine response to internet-based CBT for depression. Internet-based
treatments for depression are growing in popularity, provide efficient access to health care, reduce treatment
costs, and have good evidence for treatment efficacy. Importantly, we have a large dataset (N = 1,013) within
which to develop treatment-matching algorithms that predict treatment response based on patient attributes.
Study Impact: The overarching goal of this project is to use machine learning methods to develop treatment
matching algorithms. In the long term, we can envision a system that evaluates a patient on a number of
important predictor variables and provides a personalized probability of treatment success. These probabilities
would then be used to guide treatment selection or modify current treatment if a poor response is predicted.
Developing algorithms that successfully predict whether a particular form of treatment is likely to be successful
for a patient with a given set of attributes would be a tremendous step towards efficient and personalized
depression treatment.
摘要
抑郁症的治疗对大约50%-60%的接受治疗的患者有效,但
在治疗开始之前,成功应答的概率通常是未知的。其结果是,抑郁症
治疗通常以反复试验的方式进行,直到获得满意的反应。我们的
目的是通过应用集成机器学习技术来提供个性化的预测
多个弱预测因子的新颖、非线性组合,共同产生准确的
治疗结果。这种统计方法同时考虑了许多预测变量,并且
迭代地构建复杂的预测模型,该模型通常显著优于传统统计模型
方法:研究方法。目标1是应用随机梯度增强决策树来预测西酞普兰的疗效。
STAR*D临床试验的档案数据。在初步分析中,我们随机选择了1223名患者
训练该模型和另外407名患者独立测试该模型(75:25),并进行调整
通过交叉验证选择的参数,以将原木损失降至最低。对独立测试的结果预测
样本优于无信息率(p<;0.001),总体预测准确率为66%。
尽管这一水平的预测明显好于无信息模型,但我们计划改进
通过以下方式预测模型:1)添加捕捉并发(非
研究)药物使用和2)基于早期反应迹象的更新模型预测。目标2是使用一个
类似的机器学习方法来检查抑郁症患者对基于互联网的CBT的反应。基于互联网的
抑郁症的治疗越来越受欢迎,提供了有效的医疗保健途径,减少了治疗
成本,并有很好的证据证明治疗效果。重要的是,我们有一个大型数据集(N=1,013
以开发基于患者属性预测治疗反应的治疗匹配算法。
研究影响:该项目的总体目标是使用机器学习方法来开发治疗方法
匹配算法。从长远来看,我们可以设想一个系统,根据许多因素对患者进行评估
重要的预测变量,并提供个人化的治疗成功概率。这些概率
然后用于指导治疗选择或在预测到不良反应的情况下修改当前治疗。
开发算法,成功预测一种特定形式的治疗是否可能成功
对于拥有一组给定属性的患者来说,这将是朝着高效和个性化迈出的巨大一步
抑郁症治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHRISTOPHER G BEEVERS其他文献
CHRISTOPHER G BEEVERS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHRISTOPHER G BEEVERS', 18)}}的其他基金
Confirmatory Efficacy Trial of a Traditional vs. Gamified Attention Bias Modification for Depression
传统与游戏化注意力偏差修正治疗抑郁症的验证疗效试验
- 批准号:
10726299 - 财政年份:2023
- 资助金额:
$ 23.44万 - 项目类别:
Perceptual and decisional processes underlying face perception biases in clinical depression
临床抑郁症中面部感知偏差的知觉和决策过程
- 批准号:
9451031 - 财政年份:2017
- 资助金额:
$ 23.44万 - 项目类别:
Genetic Influences on Dual Processing Modes of Reward and Punishment Learning
遗传对奖惩学习双重加工模式的影响
- 批准号:
8446345 - 财政年份:2012
- 资助金额:
$ 23.44万 - 项目类别:
Genetic Influences on Dual Processing Modes of Reward and Punishment Learning
遗传对奖惩学习双重加工模式的影响
- 批准号:
8793770 - 财政年份:2012
- 资助金额:
$ 23.44万 - 项目类别:
Genetic Influences on Dual Processing Modes of Reward and Punishment Learning
遗传对奖惩学习双重加工模式的影响
- 批准号:
8599762 - 财政年份:2012
- 资助金额:
$ 23.44万 - 项目类别:
Genetic Influences on Dual Processing Modes of Reward and Punishment Learning
遗传对奖惩学习双重加工模式的影响
- 批准号:
8478300 - 财政年份:2012
- 资助金额:
$ 23.44万 - 项目类别:
Genetic Influences on Dual Processing Modes of Reward and Punishment Learning
遗传对奖惩学习双重加工模式的影响
- 批准号:
8294063 - 财政年份:2012
- 资助金额:
$ 23.44万 - 项目类别:
Genetic Associations with Biased Processing of Emotion Cues in MDD
MDD 中情绪线索加工偏差的遗传关联
- 批准号:
7497977 - 财政年份:2007
- 资助金额:
$ 23.44万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 23.44万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 23.44万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 23.44万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 23.44万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 23.44万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 23.44万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 23.44万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 23.44万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 23.44万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 23.44万 - 项目类别:
Research Grant