Advanced technology for neural interfaces based on microstimulation

基于微刺激的神经接口先进技术

基本信息

项目摘要

DESCRIPTION (provided by applicant): This proposal has two mutually supporting goals; to advance the design of multisite microstimulating arrays and microstimulation technology for their use in rehabilitation medicine and basic neuroscience, and to advance the development of cochlear nucleus auditory prostheses towards providing speech recognition that is at least equivalent to that of users of cochlear implants. Persons who lack a functional auditory nerve cannot benefit form cochlea implants, but some hearing can be restored by a prosthesis implanted in or on the cochlea nucleus. However, the devices now in clinical use do not restore hearing that is comparable to that of cochlea implants. They are mechanically sturdy and with their ground tips can be inserted into the brain with minimal trauma. In a cat model, we will evaluate the safety of 140 hours of microstimulation in the cat cochlear nucleus at a pulse rate of 500 pps, in order to determine the roles of stimulus pulse rate and stimulus charge density in stimulation-induced neuronal injury when the pulse rate is high (250 to 500 pps), and the electrodes' geometric surface areas is in the upper part of the range for microstimulation (2,000 to 4,000 μm2). We will determine a combination of electrode geometric surface area and stimulus charge per phase that is not injurious to the neurons and other cell types close to the electrodes. Functional electrical stimulation in the central nervous system with penetrating microelectrodes has potential applications in clinical medicine and basic neural science, and high-rate stimulation can convey more temporal information and may elicit neuronal activity that more closely resemble naturally-occurring activity by minimizing locking of neuronal activity to the individual stimulus pulses, and may find other uses in clinical medicine, including treatment of movement disorders. In a study just completed, we found that encoding of amplitude modulation by microstimulation in the cochlear nucleus is improved by using a pulse rate of 500 pps. We will enhance our multisite silicon substrate microstimulation probes in order to increase their lifetime in vivo, with the goal of qualifying them for clinical use. Our devices have 5 independent electrode sites on each shank, allowing placement of a large number of electrodes into the target nucleus with the minimum tissue displacement and damage .The silicon shanks are mechanically sturdy and their ground tips can be inserted into the brain with minimal trauma. We will develop probes of this configuration that will meet at least the following performance standards after 1 year of soak in buffered saline at 39oC , and for which accelerated testing indicates that the standards will be met for at least 8 years (1) ; inter-channel crosstalk (channe interaction) between the electrodes on the same probe shank during controlled-current pulsing below 5% for all channels on the probe shank and (2) the leakage impedance of each channel to the saline bath greater than 1 MgΩ. A multisite stimulating array that maintains these performance standards will retain essentially full functionality. We will optimize procedures for encoding the amplitude modulation (AM) of sound into an electrical stimulus that is applied in the ventral cochlear nucleus. Based on work completed in our laboratory on encoding of amplitude modulation by neurons in the inferior colliculus of the cat, this will require a high stimulus pulse rate (500 pps). This work also will serve as a test bed for the long-lived microstimulation arrays we will develop.
描述(由申请人提供):该提案有两个相互支持的目标;推进多位点微刺激阵列和微刺激技术的设计,以用于康复医学和基础神经科学,并推进耳蜗核听觉假体的开发,以提供至少相当于人工耳蜗用户的语音识别。 缺乏功能性听神经的人不能从耳蜗植入中受益,但可以通过植入耳蜗核内或耳蜗核上的假体来恢复一些听力。 然而,目前临床使用的设备不能恢复与人工耳蜗植入物相当的听力。 它们在机械上是坚固的,并且其接地尖端可以以最小的创伤插入大脑。 在猫模型中,我们将评估以500 pps的脉冲率在猫耳蜗核中进行140小时的微刺激的安全性,以确定刺激脉冲率和刺激电荷密度在高脉冲率刺激诱导的神经元损伤中的作用(250至500 pps),并且电极的几何表面积在微刺激范围的上部(2,000至4,000 μm2)。 我们将确定电极几何表面积和刺激电荷的组合,每个相位不会对神经元和靠近电极的其他细胞类型造成伤害。 具有穿透微电极的中枢神经系统中的功能性电刺激在临床医学和基础神经科学中具有潜在的应用,并且高速率刺激可以传递更多的时间信息,并且可以通过最小化神经元活动对个体刺激脉冲的锁定来引起更接近于自然发生的活动的神经元活动,并且可以在临床医学中找到其他用途。包括运动障碍的治疗。 在刚刚完成的一项研究中,我们发现,通过使用500 pps的脉冲率,耳蜗核中微刺激的幅度调制编码得到改善。 我们将增强我们的多位点硅衬底微刺激探针,以增加其在体内的使用寿命,目标是使其有资格用于临床。 我们的设备在每个柄上有5个独立的电极部位,允许将大量电极放置到靶核中,同时最小的组织位移和损伤。硅柄机械坚固,其研磨尖端可以插入大脑,创伤最小。 我们将开发这种配置的探头,在39 ℃的缓冲盐水中浸泡1年后,探头将至少满足以下性能标准,并且加速试验表明,该标准将至少满足8年(1);信道间串扰(通道相互作用)在探头柄上所有通道的受控电流脉冲低于5%的情况下,同一探头柄上的电极之间的(通道相互作用),以及(2)每个通道到盐水浴的泄漏阻抗大于1 MgΩ。 保持这些性能标准的多部位刺激阵列将基本上保留全部功能。 我们将优化程序编码的振幅调制(AM)的声音到一个电刺激,应用于腹侧耳蜗核。 基于我们实验室完成的猫下丘神经元幅度调制编码的工作,这将需要高刺激脉冲率(500 pps)。 这项工作也将作为我们将开发的长寿命微刺激阵列的测试平台。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Douglas Buchanan McCreery其他文献

Douglas Buchanan McCreery的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Douglas Buchanan McCreery', 18)}}的其他基金

Configuring microelectrodes for safe and effective chronic electrical stimulation
配置微电极以实现安全有效的慢性电刺激
  • 批准号:
    9010988
  • 财政年份:
    2015
  • 资助金额:
    $ 42.3万
  • 项目类别:
Advanced technology for neural interfaces based on microstimulation
基于微刺激的神经接口先进技术
  • 批准号:
    8573376
  • 财政年份:
    2013
  • 资助金额:
    $ 42.3万
  • 项目类别:
Advanced technology for neural interfaces based on microstimulation
基于微刺激的神经接口先进技术
  • 批准号:
    8700369
  • 财政年份:
    2013
  • 资助金额:
    $ 42.3万
  • 项目类别:
Technology for an advanced cochlear nucleus auditory prosthesis
先进的耳蜗核听觉假体技术
  • 批准号:
    7850298
  • 财政年份:
    2009
  • 资助金额:
    $ 42.3万
  • 项目类别:
Technology for an advanced cochlear nucleus auditory prosthesis
先进的耳蜗核听觉假体技术
  • 批准号:
    7903210
  • 财政年份:
    2008
  • 资助金额:
    $ 42.3万
  • 项目类别:
Technology for an advanced cochlear nucleus auditory prosthesis
先进的耳蜗核听觉假体技术
  • 批准号:
    7652422
  • 财政年份:
    2008
  • 资助金额:
    $ 42.3万
  • 项目类别:
Technology for an advanced cochlear nucleus auditory prosthesis
先进的耳蜗核听觉假体技术
  • 批准号:
    7508840
  • 财政年份:
    2008
  • 资助金额:
    $ 42.3万
  • 项目类别:
Technology for an advanced cochlear nucleus auditory prosthesis
先进的耳蜗核听觉假体技术
  • 批准号:
    8116570
  • 财政年份:
    2008
  • 资助金额:
    $ 42.3万
  • 项目类别:
Arrays for deep brain microstimulation and recording
用于深部脑微刺激和记录的阵列
  • 批准号:
    7684336
  • 财政年份:
    2007
  • 资助金额:
    $ 42.3万
  • 项目类别:
Arrays for deep brain microstimulation and recording
用于深部脑微刺激和记录的阵列
  • 批准号:
    7872753
  • 财政年份:
    2007
  • 资助金额:
    $ 42.3万
  • 项目类别:

相似海外基金

Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
  • 批准号:
    10078324
  • 财政年份:
    2023
  • 资助金额:
    $ 42.3万
  • 项目类别:
    BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
  • 批准号:
    2308300
  • 财政年份:
    2023
  • 资助金额:
    $ 42.3万
  • 项目类别:
    Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
  • 批准号:
    10033989
  • 财政年份:
    2023
  • 资助金额:
    $ 42.3万
  • 项目类别:
    Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
  • 批准号:
    23K16913
  • 财政年份:
    2023
  • 资助金额:
    $ 42.3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
  • 批准号:
    10582051
  • 财政年份:
    2023
  • 资助金额:
    $ 42.3万
  • 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
  • 批准号:
    10602958
  • 财政年份:
    2023
  • 资助金额:
    $ 42.3万
  • 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
  • 批准号:
    2889921
  • 财政年份:
    2023
  • 资助金额:
    $ 42.3万
  • 项目类别:
    Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2343847
  • 财政年份:
    2023
  • 资助金额:
    $ 42.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2141275
  • 财政年份:
    2022
  • 资助金额:
    $ 42.3万
  • 项目类别:
    Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
  • 批准号:
    DGECR-2022-00019
  • 财政年份:
    2022
  • 资助金额:
    $ 42.3万
  • 项目类别:
    Discovery Launch Supplement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了