SKca/IKca Channel Activation and Endothelial Protection During Cardiac Surgery
心脏手术期间 SKca/IKca 通道激活和内皮保护
基本信息
- 批准号:9284898
- 负责人:
- 金额:$ 37.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnimal ModelAnimalsApoptosisBiochemistryBlood VesselsCalcium-Activated Potassium ChannelCardiac Surgery proceduresCardiovascular DiseasesCardiovascular systemCellsComplexCoronaryCoronary ArteriosclerosisCoronary arteryDataDiabetes MellitusDiabetic AngiopathiesDiabetic mouseEndothelial CellsEndotheliumEventGene ProteinsGenesGoalsHeartHumanImpairmentInduced Heart ArrestInvestigationIschemiaLeadMediatingMembrane PotentialsMetabolicMetabolismMicrocirculationMitochondriaMolecularMolecular and Cellular BiologyMorbidity - disease rateMusMyocardial IschemiaMyocardiumNADHNADPH OxidaseOxidative StressPathogenesisPatientsPharmacologyPhysiologyPlayProductionProtein IsoformsReactive Oxygen SpeciesRegulationRelaxationReperfusion InjuryReperfusion TherapyResearchRoleSamplingSarcolemmaSignal PathwaySignal TransductionTestingTissuesVasodilationVasomotorarterioledensitydiabeticdiabetic patientendothelial dysfunctionendothelium dependent hyperpolarization factorexperimental studyimprovedinhibitor/antagonistknock-downmitochondrial dysfunctionmortalitymouse modelnon-diabeticnovel therapeuticsoverexpressionpatch clampresponse
项目摘要
Endothelial dysfunction plays a key role in the pathogenesis of diabetic vascular disease, which predisposes to ischemic
cardiovascular events. These vascular disturbances may increase morbidity and mortality in diabetic patients. Endothelial
dysfunction from diabetes is associated with altered metabolism and inactivation of small (SKCa) and intermediate (IKCa)
conductance calcium-activated-potassium channels in the animal and human coronary vasculature. However, the precise
mechanisms responsible for diabetic inactivation of SKCa/IKCa and coronary endothelial dysfunction are still undefined.
Recently, we demonstrated that elevation in intracellular NADH results in a significant decrease in endothelial SKCa/IKCa,
and the lack of changes in SKCa/IKCa gene/protein abundances in the setting of diabetes and ischemia/reperfusion (I/R)
suggests that the effect is post-translational. The goal of this project is to investigate how metabolic changes during
diabetes negatively regulate SKCa/IKCa channels of animal/human endothelial cells and endothelial function in the
animal/human coronary microvasculature and to evaluate if SKCa/IKCa activation and/or metabolic modulation protect
endothelial cells/vessels against diabetes and ischemic insults. We hypothesize that persistent overproduction of reactive
oxygen species (ROS) via NADPH oxidase (Nox), dysfunctional mitochondria and PKC during diabetes will result in 1)
inactivation of endothelial SKCa/IKCa, 2) impairment of coronary endothelial function/arteriolar relaxation; and that 3)
inhibition of Nox and mROS and/or PKC SKCa/IKCa overexpression may potentiate SKCa/IKCa activator-induced endothelial
protection of endothelial cells/coronary arterioles against a simulated cardioplegia I/R injury. Using a type-2 diabetic mice
model and heart/vessels/endothelial cell samples from patients, we will test our hypothesis by completing 4 specific aims.
Aim 1 will investigate the molecular mechanisms by which persistent over-expression/activation of NADH/Nox during
diabetes results in mROS and PKC overproduction/activation, leading to SKCa/IKCa inactivation, endothelial
dysfunction/impaired vasodilatation, Aim 2 will elucidate the mechanisms by which persistent increases in mROS from
the mitochondrial complex are required for diabetic inactivation of SKCa/IKCa, and endothelial function and arteriolar
vasodilatation. Aim 3 will define the signaling pathways by which persistent PKC activation during diabetes negatively
modifies SKCa/IKCa, and coronary endothelial function and microvascular relaxation. These experiments will also determine
if PKC mediates its effects on the SKCa/IKCa channel either by direct action on the channel complex or by causing channel
isolation from the sarcolemma. Aim 4: To examine if pharmacologic inhibition/gene knockdown of Nox, mROS, PKC and/or
SKCa/IKCa overexpression may potentiate SKCa/IKCa activator-induced endothelial protection against a simulated
cardioplegic I/R injury. To achieve these goals, multiple approaches will be employed such as patch clamping, molecular
and cellular biology, biochemistry, vascular physiology, diabetic mouse model and human heart tissue/vessel/cell samples.
The present study should lead to novel therapeutic strategies to preserve coronary endothelial function and microvascular
relaxation for diabetic or non-diabetic patients with ischemic heart disease during cardiac surgery.
内皮功能障碍在糖尿病血管疾病的发病机制中起关键作用,易导致缺血
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jun Feng其他文献
Jun Feng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jun Feng', 18)}}的其他基金
CaMKII and Endothelial SK Channel Function in Diabetic Coronary Microcirculation
CaMKII 和内皮 SK 通道在糖尿病冠状动脉微循环中的功能
- 批准号:
10930197 - 财政年份:2023
- 资助金额:
$ 37.92万 - 项目类别:
SKca/IKca Channel Activation and Endothelial Protection During Cardiac Surgery
心脏手术期间 SKca/IKca 通道激活和内皮保护
- 批准号:
9919369 - 财政年份:2017
- 资助金额:
$ 37.92万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 37.92万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 37.92万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 37.92万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 37.92万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 37.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 37.92万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 37.92万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 37.92万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 37.92万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 37.92万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




