Automated Coding of eCoaching Exchanges to Promote Healthier Eating

电子教练交流的自动编码以促进健康饮食

基本信息

  • 批准号:
    9336295
  • 负责人:
  • 金额:
    $ 18.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

Poor eating habits, particularly low fruit and vegetable intake, is a growing, serious public health concern, particularly among young adults age 21-30, referred to as Generation Y (GenY). GenY's poor dietary practices are associated with the onset of obesity and many chronic diseases, such as type 2 diabetes, as well as declines in predicted health status and life expectancy. Thus, there is a need to develop effective interventions to improve GenY's eating habits. MENU GenY is a computer-based intervention to encourage increased fruit and vegetable intake among GenY. A critical component of MENU GenY is personalized eCoaching. eCoaches use email to deliver motivation-enhancing coaching to encourage healthy eating, grounded in the principles of Motivational Interviewing (MI), an evidence-based communication technique to increase intrinsic motivation and self-efficacy for behavior change. The MI model posits that counselor's use of “MI-consistent” communication techniques are responsible for eliciting behavior change through patient “change talk” (i.e., statements about one's own desire, ability, reasons, need for or commitment to behavior change). A growing body of empirical evidence links change talk to behavior change, but research identifying the specific provider behaviors that elicit patient change talk is limited to specific populations (mainly adults who abuse substances and a couple studies of adolescents). Identifying specific communication strategies linked to behavior change and integrating these strategies into communication-based interventions (e.g., brief, motivation-enhancing interventions delivered in a variety of settings or public health initiatives) can increase these interventions' potency. However, a significant barrier to this research is the qualitative methods traditionally used to analyze the communication process which are resource-intensive, requiring an iterative process of human (subjective) interpretation of text. Rapidly developing computational technologies, specifically machine learning combined with classification models, offer a unique opportunity to accelerate this process. Our research group has recently applied machine learning-based data mining models to similar communication data. We automated a simple communication code scheme to characterize patient communication and achieved accuracy comparable to human coders. The goals of this study are to leverage innovative computer science machine learning and classification models to fully automate the communication coding process and link patterns in eCoach-patient communication to increases in fruit and vegetable intake. We propose a secondary analysis of data collected for a NICHD randomized clinical trial (R01 HD067314). The sample is 160 members of GenY drawn from both urban and rural settings (Detroit metropolitan area and rural Pennsylvania) with outcomes measured at baseline and 3 months. Our validated approach will accelerate the pace of outcomes-oriented communication research and identify effective communication strategies linked to healthy eating. These findings will be used to tailor interventions and public health messages and develop automated eCoaching.
不良的饮食习惯,特别是水果和蔬菜摄入量低,是一个日益严重的公共卫生问题, 特别是在21-30岁的年轻人中,被称为Y世代(GenY)。GenY的不良饮食习惯 与肥胖症和许多慢性疾病的发病有关,如2型糖尿病, 预测健康状况和预期寿命。因此,有必要制定有效的干预措施, 改善Geny的饮食习惯。MENU GenY是一种基于计算机的干预措施,旨在鼓励增加水果产量, 蔬菜的摄入量。MENU GenY的一个关键组成部分是个性化的eCoaching。eCoaches使用 电子邮件提供激励增强辅导,以鼓励健康饮食,以原则为基础, 动机访谈(MI),一种基于证据的沟通技术,以增加内在动机 和自我效能感来改变行为MI模型假定咨询师使用“MI一致” 通信技术负责通过患者“改变谈话”(即, 关于自己的愿望,能力,原因,需要或承诺改变行为的陈述)。越来越 大量的经验证据将改变谈话与行为改变联系起来,但研究确定了具体的提供者, 引发患者改变谈话的行为仅限于特定人群(主要是滥用药物的成年人 和一些青少年的研究)。确定与行为改变相关的具体沟通策略 并将这些策略整合到基于沟通的干预措施中(例如,简短的,增强动力的 在各种环境或公共卫生倡议中提供的干预措施)可以增加这些干预措施的 力量然而,这项研究的一个重大障碍是传统上用于分析的定性方法, 沟通过程是资源密集型的,需要人为(主观)的迭代过程 文本的解释。快速发展的计算技术,特别是机器学习结合 与分类模型,提供了一个独特的机会,以加快这一进程。我们的研究小组 最近将基于机器学习的数据挖掘模型应用于类似的通信数据。我们自动化了 简单的通信编码方案,以表征患者通信,并实现了可比的准确性 人类程序员这项研究的目标是利用创新的计算机科学机器学习, 分类模型,以完全自动化eCoach-patient中的通信编码过程和链接模式 增加水果和蔬菜的摄入量。我们建议对收集的数据进行二次分析 NICHD随机临床试验(R 01 HD 067314)。样本是160名GenY成员, 城市和农村环境(底特律大都市区和宾夕法尼亚州农村), 基线和3个月。我们经过验证的方法将加快以结果为导向的沟通的步伐 研究并确定与健康饮食相关的有效沟通策略。这些发现将用于 定制干预措施和公共卫生信息,并开发自动化电子辅导。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deep Neural Architectures for Discourse Segmentation in E-Mail Based Behavioral Interventions.
基于电子邮件的行为干预中的话语分割的深层神经架构。
Predicting the Outcome of Patient-Provider Communication Sequences using Recurrent Neural Networks and Probabilistic Models
Identifying Effective Motivational Interviewing Communication Sequences Using Automated Pattern Analysis.
使用自动模式分析识别有效的动机访谈沟通序列。
  • DOI:
    10.1007/s41666-018-0037-6
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Hasan,Mehedi;Carcone,AprilIdalski;Naar,Sylvie;Eggly,Susan;Alexander,GwenL;Hartlieb,KathrynEBrogan;Kotov,Alexander
  • 通讯作者:
    Kotov,Alexander
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

April Marie Idalski Carcone其他文献

April Marie Idalski Carcone的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('April Marie Idalski Carcone', 18)}}的其他基金

Improving Diabetes Health in Emerging Adulthood Through an Autonomy Supportive Intervention.
通过自主支持干预改善成年初期的糖尿病健康。
  • 批准号:
    9888400
  • 财政年份:
    2019
  • 资助金额:
    $ 18.72万
  • 项目类别:
Improving Diabetes Health in Emerging Adulthood Through an Autonomy Supportive Intervention.
通过自主支持干预改善成年初期的糖尿病健康。
  • 批准号:
    10093019
  • 财政年份:
    2019
  • 资助金额:
    $ 18.72万
  • 项目类别:
Improving Diabetes Health in Emerging Adulthood Through an Autonomy Supportive Intervention.
通过自主支持干预改善成年初期的糖尿病健康。
  • 批准号:
    10551262
  • 财政年份:
    2019
  • 资助金额:
    $ 18.72万
  • 项目类别:
Improving Diabetes Health in Emerging Adulthood Through an Autonomy Supportive Intervention.
通过自主支持干预改善成年初期的糖尿病健康。
  • 批准号:
    10337039
  • 财政年份:
    2019
  • 资助金额:
    $ 18.72万
  • 项目类别:
Automated Coding of eCoaching Exchanges to Promote Healthier Eating
电子教练交流的自动编码以促进健康饮食
  • 批准号:
    9181203
  • 财政年份:
    2016
  • 资助金额:
    $ 18.72万
  • 项目类别:
Patient-Provider Communication to Promote Health Behavior Change in African Ameri
医患沟通促进非裔美国人健康行为的改变
  • 批准号:
    8770193
  • 财政年份:
    2014
  • 资助金额:
    $ 18.72万
  • 项目类别:
Patient-Provider Communication to Promote Health Behavior Change in African Ameri
医患沟通促进非裔美国人健康行为的改变
  • 批准号:
    8882416
  • 财政年份:
    2014
  • 资助金额:
    $ 18.72万
  • 项目类别:

相似海外基金

Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
  • 批准号:
    23K09542
  • 财政年份:
    2023
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The impact of changes in social determinants of health on adolescent and young adult mental health during the COVID-19 pandemic: A longitudinal study of the Asenze cohort in South Africa
COVID-19 大流行期间健康社会决定因素的变化对青少年和年轻人心理健康的影响:南非 Asenze 队列的纵向研究
  • 批准号:
    10755168
  • 财政年份:
    2023
  • 资助金额:
    $ 18.72万
  • 项目类别:
A Priority Setting Partnership to Establish a Patient, Caregiver, and Clinician-identified Research Agenda for Adolescent and Young Adult Cancer in Canada
建立优先合作伙伴关系,以建立患者、护理人员和临床医生确定的加拿大青少年和年轻人癌症研究议程
  • 批准号:
    480840
  • 财政年份:
    2023
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Miscellaneous Programs
Incidence and Time on Onset of Cardiovascular Risk Factors and Cardiovascular Disease in Adult Survivors of Adolescent and Young Adult Cancer and Association with Exercise
青少年和青年癌症成年幸存者心血管危险因素和心血管疾病的发病率和时间以及与运动的关系
  • 批准号:
    10678157
  • 财政年份:
    2023
  • 资助金额:
    $ 18.72万
  • 项目类别:
Fertility experiences among ethnically diverse adolescent and young adult cancer survivors: A population-based study
不同种族青少年和年轻成年癌症幸存者的生育经历:一项基于人群的研究
  • 批准号:
    10744412
  • 财政年份:
    2023
  • 资助金额:
    $ 18.72万
  • 项目类别:
Treatment development for refractory leukemia using childhood/adolescent, and young adult leukemia biobank
利用儿童/青少年和青年白血病生物库开发难治性白血病的治疗方法
  • 批准号:
    23K07305
  • 财政年份:
    2023
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular design of Two-Way Player CAR-T cells to overcome disease/antigen heterogeneity of childhood, adolescent, and young adult cancers
双向 CAR-T 细胞的分子设计,以克服儿童、青少年和年轻成人癌症的疾病/抗原异质性
  • 批准号:
    23H02874
  • 财政年份:
    2023
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Effects of adolescent social isolation on adult decision making and corticostriatal circuitry
青少年社会隔离对成人决策和皮质纹状体回路的影响
  • 批准号:
    10756652
  • 财政年份:
    2023
  • 资助金额:
    $ 18.72万
  • 项目类别:
Adolescent trauma produces enduring disruptions in sleep architecture that lead to increased risk for adult mental illness
青少年创伤会对睡眠结构产生持久的破坏,从而导致成人精神疾病的风险增加
  • 批准号:
    10730872
  • 财政年份:
    2023
  • 资助金额:
    $ 18.72万
  • 项目类别:
Using Tailored mHealth Strategies to Promote Weight Management among Adolescent and Young Adult Cancer Survivors
使用量身定制的移动健康策略促进青少年和年轻癌症幸存者的体重管理
  • 批准号:
    10650648
  • 财政年份:
    2023
  • 资助金额:
    $ 18.72万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了