Diagnosing and Targeting Mechanisms of Diuretic Resistance in Heart Failure

心力衰竭利尿抵抗的诊断和靶向机制

基本信息

  • 批准号:
    9268567
  • 负责人:
  • 金额:
    $ 73.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2020-04-30
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): The overarching goal of this proposal is to create and validate pragmatic tools to rapidly detect and define the mechanism of diuretic resistance (DR), allowing individualized therapy in patients with acute decompensated heart failure (ADHF). ADHF is the most common hospital discharge diagnosis among Medicare beneficiaries and accounts for more than half of all heart failure (HF) related expenditures. This epidemic of ADHF is primarily driven by fluid and sodium overload, leaving the loop diuretics as the most commonly used medications to treat and prevent ADHF. Unfortunately, a loss of response to loop diuretics, termed diuretic resistance (DR), is common and contributes to a vicious cycle of out of hospital fluid/sodium retention, incomplete in-hospital decongestion, followed by post-discharge re-accumulation of fluid/sodium and worsened outcomes. Despite its importance, the speed and fidelity with which we can diagnose DR is extremely limited. This results in potentially avoidable hospitalization of outpatients and "wasted" hospital days where effective diuresis does not occur in inpatients. Once recognized, tools to determine the mechanism for DR and thus individualize treatment are nonexistent. Although multiple mechanisms contribute to loop DR, two therapeutically distinct groups exist: (1) inadequate effect at the tubular site of action, whih requires treatment with increased dose or delivery of loop diuretic and (2) compensatory distal tubular sodium reabsorption, which requires treatment with sequential nephron blockade (i.e., thiazide diuretics). Our inability to differentiate these mechanisms leaves trial and error as the only method to treat DR, further delaying effective diuresis and exposing patients to medications with known toxicities when the empiric choice is incorrect. In the present study, we will enroll 200 ADHF patients and evaluate them longitudinally through key transitions in loop diuretic therapy (early into IV therapy, late IV therapy, after conversion to oral diuretics, and 5-7 days post discharge). Patients with significant DR during early IV therapy will be randomized to increased loop diuretic dose or add on thiazide diuretic stratified by the DR mechanism. The data generated through the above investigation will allow us to: (1) develop inexpensive and efficient tools to predict diuretic response in a reliable and timely manner; (2) understand the prevalence of therapeutically targetable mechanisms of DR using endogenous lithium clearance, a "gold standard" technique to query in vivo proximal tubular/loop of Henle sodium handling; (3) develop methodology to differentiate DR mechanisms using common/inexpensive laboratory tests; and (4) provide proof of concept that mechanistically tailored diuretic therapy can improve natriuresis. Our preliminary data suggests that diagnosis and phenotyping of DR can in fact be done with excellent accuracy (AUC =~0.9) using universally available urine/serum chemistries. At the conclusion of this research, our goal is to provide clinicians and researchers with a workable tool to accurately/rapidly diagnose and phenotype DR allowing individualized diuretic therapy for both inpatients and outpatients with heart failure.
 描述(由申请人提供):本提案的总体目标是创建和验证实用工具,以快速检测和定义利尿剂抵抗(DR)的机制,从而实现急性失代偿性心力衰竭(ADHF)患者的个体化治疗。ADHF是医疗保险受益人中最常见的出院诊断,占所有心力衰竭(HF)相关支出的一半以上。这种ADHF的流行主要是由液体和钠超负荷驱动的,使得袢利尿剂成为治疗和预防ADHF最常用的药物。不幸的是,对袢利尿剂的反应丧失(称为利尿剂抵抗(DR))是常见的,并导致医院外液体/钠潴留,医院内不完全缓解充血,随后是出院后液体/钠重新积聚和结局恶化的恶性循环。尽管它很重要,但我们诊断DR的速度和准确性非常有限。这导致门诊病人住院治疗,住院病人不能进行有效的利尿,从而“浪费”了住院日。一旦认识到,工具来确定DR的机制,从而个性化治疗是不存在的。虽然多种机制导致袢DR,但存在两种治疗上不同的组:(1)在肾小管作用部位的作用不足,其需要用增加剂量或递送袢利尿剂进行治疗,和(2)代偿性远端肾小管钠重吸收,其需要用顺序肾单位阻断进行治疗(即,噻嗪类利尿剂)。我们无法区分这些机制,使得试错法成为治疗DR的唯一方法,进一步延迟了有效的利尿,并在经验性选择不正确时使患者暴露于已知毒性的药物。 在本研究中,我们将入组200例ADHF患者,并通过袢利尿剂治疗的关键转换(早期进入IV治疗,晚期IV治疗,转换为口服利尿剂后,以及出院后5-7天)对其进行纵向评价。在早期IV治疗期间发生显著DR的患者将被随机分配至增加袢利尿剂剂量或添加噻嗪类利尿剂组,根据DR机制分层。通过上述研究产生的数据将使我们能够:(1)开发廉价和有效的工具,以可靠和及时的方式预测利尿反应;(2)了解使用内源性锂清除率的DR治疗靶向机制的流行率,这是一种查询体内近端肾小管/Henle钠处理环的“金标准”技术;(3)开发使用常见/廉价实验室检查区分DR机制的方法;(4)提供机械定制利尿剂治疗可以改善尿钠排泄的概念证据。我们的初步数据表明,DR的诊断和表型分型实际上可以使用普遍可用的尿液/血清化学进行,具有极好的准确性(AUC =~0.9)。在这项研究的结论,我们的目标是为临床医生和研究人员提供一个可行的工具,以准确/快速诊断和表型DR允许个性化利尿治疗的住院患者和门诊患者的心力衰竭。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JEFFREY M TESTANI其他文献

JEFFREY M TESTANI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JEFFREY M TESTANI', 18)}}的其他基金

Mechanisms of diuretic resistance in heart failure
心力衰竭的利尿抵抗机制
  • 批准号:
    10342535
  • 财政年份:
    2022
  • 资助金额:
    $ 73.53万
  • 项目类别:
Mechanisms of diuretic resistance in heart failure
心力衰竭中利尿剂抵抗的机制
  • 批准号:
    10624206
  • 财政年份:
    2022
  • 资助金额:
    $ 73.53万
  • 项目类别:
Cardio-Renal Effects of Torsemide vs. Furosemide: A TRANSFORM-HF Mechanistic Sub-Study
托塞米与呋塞米的心肾效应:TRANSFORM-HF 机制子研究
  • 批准号:
    10444981
  • 财政年份:
    2019
  • 资助金额:
    $ 73.53万
  • 项目类别:
Cardio-Renal Effects of Torsemide vs. Furosemide: A TRANSFORM-HF Mechanistic Sub-Study
托塞米与呋塞米的心肾效应:TRANSFORM-HF 机制子研究
  • 批准号:
    10199884
  • 财政年份:
    2019
  • 资助金额:
    $ 73.53万
  • 项目类别:
Mechanism and Effects of Manipulating Chloride Homeostasis in Heart Failure
控制心力衰竭氯离子稳态的机制和作用
  • 批准号:
    10371886
  • 财政年份:
    2018
  • 资助金额:
    $ 73.53万
  • 项目类别:
Diagnosing and Targeting Mechanisms of Diuretic Resistance in Heart Failure
心力衰竭利尿抵抗的诊断和靶向机制
  • 批准号:
    8947108
  • 财政年份:
    2015
  • 资助金额:
    $ 73.53万
  • 项目类别:
Diagnosing and Targeting Mechanisms of Diuretic Resistance in Heart Failure
心力衰竭利尿抵抗的诊断和靶向机制
  • 批准号:
    9115702
  • 财政年份:
    2015
  • 资助金额:
    $ 73.53万
  • 项目类别:
Cardio-renal phenotype and prognosis in chronic heart failure
慢性心力衰竭的心肾表型和预后
  • 批准号:
    8852687
  • 财政年份:
    2012
  • 资助金额:
    $ 73.53万
  • 项目类别:
Cardio-renal phenotype and prognosis in chronic heart failure
慢性心力衰竭的心肾表型和预后
  • 批准号:
    8526546
  • 财政年份:
    2012
  • 资助金额:
    $ 73.53万
  • 项目类别:
Cardio-renal phenotype and prognosis in chronic heart failure
慢性心力衰竭的心肾表型和预后
  • 批准号:
    9069030
  • 财政年份:
    2012
  • 资助金额:
    $ 73.53万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 73.53万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 73.53万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 73.53万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 73.53万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 73.53万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 73.53万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 73.53万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 73.53万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 73.53万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 73.53万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了