Deep learning for representation of codes used for SEER-Medicare claims research

用于 SEER-Medicare 索赔研究的代码表示的深度学习

基本信息

  • 批准号:
    9188540
  • 负责人:
  • 金额:
    $ 21.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-12-01 至 2018-11-30
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): We propose developing an algorithm and user-friendly software to better identify treatments using Medicare claims data. We will validate our approach using procedures listed in the Surveillance, Epidemiology, and End Results (SEER) database as a gold standard. In this way, we hope to better match procedures identified using Medicare claims data with SEER listed procedures. The focus of this research is observational (i.e. non-randomized) data. Well-run randomized clinical trials can provide the best level of evidence of treatment effects. However, randomized trials in the United States have suffered from poor accrual for many interventions. Despite the fact that well-designed randomized clinical trials should be the gold standard, well-designed observational studies might be the only method of obtaining inferences concerning comparative effectiveness for some cancer interventions. In cancer research, one of the most commonly used databases for observational research is the linked SEER-Medicare database. SEER-Medicare data has provided useful measurements of the effectiveness of a number of cancer therapies. Algorithms for identifying relevant treatment and diagnosis codes using Medicare data are often based on clinical reasoning and scientific evidence. One group of researchers, for example, developed an algorithm for identifying laparoscopic surgery among kidney cancer cases before claims codes for laparoscopic surgery were well developed. While such algorithms are useful for others pursuing similar investigations, there may still be substantial mismatch between treatment identified by the SEER cancer registry and treatment identified through Medicare claims. In this work, we propose developing a rigorous machine learning algorithm that can help researchers in better identifying treatments in Medicare claims data. Specifically, we will design a neural language modeling algorithm and implement a software system that finds vector representations of diagnosis and procedure codes. We plan on using the neural language modeling algorithm to learn vector representations from SEER- Medicare claims data where related procedure and diagnosis codes are "neighbors" (i.e. closely related). We will investigate whether the codes we identify within neighborhoods correspond to the procedure codes used for published SEER-Medicare studies. We will then design a software assistant interface that will allow an investigator to explore which codes are related to a given seed of diagnosis or procedure codes. Finally, we will investigate the sensitivity and specificity of the algorithm by comparing procedures identified using Medicare claims with procedures listed in the SEER database. We will replicate analyses from a published SEER-Medicare paper to investigate if estimated treatment effects differ when using our novel algorithm compared to using the algorithm in the published paper.


项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian L Egleston其他文献

RELATIONSHIP OF TUMOR SIZE AND GRADE IN LOCALIZED RENAL CELL CARCINOMA: A SEER ANALYSIS
  • DOI:
    10.1016/s0022-5347(08)61110-6
  • 发表时间:
    2008-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jason R Rothman;Yu-Ning Wong;Brian L Egleston;Kevan Iffrig;Steve Lebovitch;Robert G Uzzo
  • 通讯作者:
    Robert G Uzzo
A COMPREHENSIVE NOMOGRAM EVALUATING COMPETING RISKS OF DEATH IN PATIENTS WITH LOCALIZED RENAL CELL CARCINOMA (RCC)
  • DOI:
    10.1016/s0022-5347(08)60969-6
  • 发表时间:
    2008-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Robert G Uzzo;Brian L Egleston;Yu-Ning Wong
  • 通讯作者:
    Yu-Ning Wong
HISTOLOGICAL SUBTYPES OF LOCALIZED RENAL CELL CARCINOMA (RCC)CORRELATE WITH TUMOR SIZE: A SEER ANALYSIS
  • DOI:
    10.1016/s0022-5347(09)61003-x
  • 发表时间:
    2009-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jason Rothman;Brian L Egleston;Yu-Ning Wong;Kevan Iffrig;Steve Lebovitch;Robert G Uzzo
  • 通讯作者:
    Robert G Uzzo
CRYOABLATION VERSUS RADIOFREQUENCY ABLATION OF THE SMALL RENAL MASS: A META-ANALYSIS OF PUBLISHED LITERATURE
  • DOI:
    10.1016/s0022-5347(08)60962-3
  • 发表时间:
    2008-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    David A Kunkle;Brian L Egleston;Robert G Uzzo
  • 通讯作者:
    Robert G Uzzo
COMPETING CAUSES OF MORTALITY IN PATIENTS WITH T1B RENAL CELL CARCINOMA: ADDITIONAL EVIDENCE TO EXPAND THE INDICATIONS FOR NEPHRON SPARING SURGERY
  • DOI:
    10.1016/s0022-5347(09)60909-5
  • 发表时间:
    2009-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    David J Kaplan;Robert G Uzzo;Brian L Egleston;David Y.T. Chen;Stephen A Boorjian
  • 通讯作者:
    Stephen A Boorjian

Brian L Egleston的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian L Egleston', 18)}}的其他基金

Clinical Trials with Exclusions Based on Race, Ethnicity, and English Fluency
基于种族、民族和英语流利程度进行排除的临床试验
  • 批准号:
    8608501
  • 财政年份:
    2013
  • 资助金额:
    $ 21.98万
  • 项目类别:
Clinical Trials with Exclusions Based on Race, Ethnicity, and English Fluency
基于种族、民族和英语流利程度进行排除的临床试验
  • 批准号:
    8440648
  • 财政年份:
    2013
  • 资助金额:
    $ 21.98万
  • 项目类别:
Identifying Subgroups with Localized Kidney Cancer Who Can Defer Surgery
确定可以推迟手术的局限性肾癌亚组
  • 批准号:
    8231315
  • 财政年份:
    2011
  • 资助金额:
    $ 21.98万
  • 项目类别:
Identifying Subgroups with Localized Kidney Cancer Who Can Defer Surgery
确定可以推迟手术的局限性肾癌亚组
  • 批准号:
    8112853
  • 财政年份:
    2011
  • 资助金额:
    $ 21.98万
  • 项目类别:

相似海外基金

PARENT CONTRACT HHSN261201400011I TERMS AND CONDITIONS APPLY THIS IS A TASK ORDER FOR MEETING SUPPORT ACTIVITIES FOR THE NATIONAL CANCER INSTITUTE (NCI) CANCER INTERVENTION AND SURVEILLANCE MODELING
母合同 HHSN261201400011I 适用条款和条件 这是为国家癌症研究所 (NCI) 癌症干预和监测建模会议支持活动的任务订单
  • 批准号:
    10937664
  • 财政年份:
    2022
  • 资助金额:
    $ 21.98万
  • 项目类别:
Pre-Meeting Planning Activities for Cancer Intervention and Surveillance Modeling Network (CISNET)
癌症干预和监测模型网络 (CISNET) 会前规划活动
  • 批准号:
    10570152
  • 财政年份:
    2022
  • 资助金额:
    $ 21.98万
  • 项目类别:
Pre-Meeting Planning Activities for Cancer Intervention and Surveillance Modeling Network (CISNET)
癌症干预和监测模型网络 (CISNET) 会前规划活动
  • 批准号:
    10352287
  • 财政年份:
    2021
  • 资助金额:
    $ 21.98万
  • 项目类别:
Pre-Meeting Planning Activities for Cancer Intervention and Surveillance Modeling Network (CISNET)
癌症干预和监测模型网络 (CISNET) 会前规划活动
  • 批准号:
    10788047
  • 财政年份:
    2019
  • 资助金额:
    $ 21.98万
  • 项目类别:
Pre-Meeting Planning Activities for Cancer Intervention and Surveillance Modeling Network (CISNET). POP 2/21/19 - 2/20/2020.
癌症干预和监测模型网络 (CISNET) 的会前规划活动。
  • 批准号:
    10046086
  • 财政年份:
    2019
  • 资助金额:
    $ 21.98万
  • 项目类别:
Task Order No.62 - Pre-Meeting Planning Activities for Cancer Intervention and Surveillance Modeling Network (CISNET)
第 62 号任务令 - 癌症干预和监测建模网络 (CISNET) 会前规划活动
  • 批准号:
    9581374
  • 财政年份:
    2016
  • 资助金额:
    $ 21.98万
  • 项目类别:
A Web-Based Self-Management Support Program to Promote Adaptation to Cancer in the Acute Treatment Phase: Usability and Feasibility of the "I-Can Manage Cancer" Intervention
基于网络的自我管理支持计划,以促进急性治疗阶段对癌症的适应:“我可以管理癌症”干预措施的可用性和可行性
  • 批准号:
    358983
  • 财政年份:
    2016
  • 资助金额:
    $ 21.98万
  • 项目类别:
    Operating Grants
Stem Cell-Directed Nanotheranostics for Cancer Intervention
用于癌症干预的干细胞导向纳米治疗学
  • 批准号:
    8130512
  • 财政年份:
    2012
  • 资助金额:
    $ 21.98万
  • 项目类别:
Stem Cell-Directed Nanotheranostics for Cancer Intervention
用于癌症干预的干细胞导向纳米治疗学
  • 批准号:
    8634736
  • 财政年份:
    2012
  • 资助金额:
    $ 21.98万
  • 项目类别:
Stem Cell-Directed Nanotheranostics for Cancer Intervention
用于癌症干预的干细胞导向纳米治疗学
  • 批准号:
    8458196
  • 财政年份:
    2012
  • 资助金额:
    $ 21.98万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了