Reconstruction of 3D Genome Architecture from Chromatin Conformation Capture Data
从染色质构象捕获数据重建 3D 基因组架构
基本信息
- 批准号:9381607
- 负责人:
- 金额:$ 31.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmic AnalysisAlgorithmsArchitectureBiologicalBiological AssayBiologyCalibrationCell physiologyCellsChromatinComputing MethodologiesConsensusDataData SetDetectionDevelopmentDimensionsDiscriminationFormulationGene Expression RegulationGenerationsGenomeHeterogeneityImageIn SituIndividualJointsLinkMapsMethodsMolecular ConformationNeighborhoodsOncogenicPopulationProteinsRepetitive SequenceResolutionStatistical AlgorithmStatistical MethodsStructureTechniquesUncertaintyVariantWorkbasecell typegenome-widegenome-wide analysishigh resolution imagingimprovedindexinginnovationnew technologynovelreconstructionsingle cell analysistool
项目摘要
Abstract
We are poised to enter a new era of conformational biology. Genome conformation is critical for
numerous cellular processes, including gene regulation, with certain alterations (translocations, fu-
sions) being oncogenic. While recent assays, notably Hi-C, have already transformed understanding
of chromatin architecture, even newer technologies have the potential to dramatically improve
accuracy and resolution of three-dimensional (3D) genome reconstructions. However, to fully
realize this potential, new statistical methods and algorithms will be required to operate on the
resultant data and structures, and to integrate concomitant biomedical data. This project aims at
developing such methods. A concrete example is provided by current findings identifying an
instance of insulated neighborhood disruption as a novel oncogenic mechanism. Instead of an
individual instance, we will develop methods to detect, and prioritize, genome-wide candidates,
building on our previous work on 3D hotspot elicitation. In particular, we will devise original
reconstruction-free approaches to avert uncertainties in inferring architecture.
Despite these uncertainties, reconstructions confer several advantages. We will deploy newly
devised assays, in conjunction with recent algorithmic advances, to improve reconstruction accuracy
and resolution. Multiplexed FISH provides richer imaging of chromatin conformation, enabling
refinement of transfer functions linking Hi-C contacts to distances, a precursor to reconstruction.
Protein-centric HiChIP provides gains in informative reads, as does multi-read rescue. Combining
these advances will produce enhanced approaches to 3D genome reconstruction.
The very notion of ‘a’ 3D genome reconstruction has been questioned since the underlying Hi- C
assays are based on large cell populations. Multiplexed in situ Hi-C has enabled generation of
thousands of single-cell datasets which we will couple with a new multi-track reconstruction
algorithm to dissect inter-cellular structural heterogeneity. We will also use this data to develop
classifiers, based on structural differences, for between cell-type discrimination.
Much downstream interpretation of Hi-C data has derived from spectral analysis of the contact
matrix, especially delineation of chromatin compartments. Spectral summarization has limitations
including compartment identification at high resolution, sensitivity to normalization, and extent of
explained variation. We will evaluate spectral analysis of contact matrices with emphasis on the
impact of approximations on 3D reconstructions, assessed via (i) inferred distance matrices, (ii)
derived reconstructions, and (iii) subsequent hotspot detection.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARK R SEGAL其他文献
MARK R SEGAL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARK R SEGAL', 18)}}的其他基金
Reconstruction of 3D Genome Architecture from Chromatin Conformation Capture Data
从染色质构象捕获数据重建 3D 基因组架构
- 批准号:
8725712 - 财政年份:2013
- 资助金额:
$ 31.7万 - 项目类别:
Reconstruction of 3D Genome Architecture from Chromatin Conformation Capture Data
从染色质构象捕获数据重建 3D 基因组架构
- 批准号:
8878307 - 财政年份:2013
- 资助金额:
$ 31.7万 - 项目类别:
Reconstruction of 3D Genome Architecture from Chromatin Conformation Capture Data
从染色质构象捕获数据重建 3D 基因组架构
- 批准号:
9102112 - 财政年份:2013
- 资助金额:
$ 31.7万 - 项目类别:
Reconstruction of 3D Genome Architecture from Chromatin Conformation Capture Data
从染色质构象捕获数据重建 3D 基因组架构
- 批准号:
8639665 - 财政年份:2013
- 资助金额:
$ 31.7万 - 项目类别:
Reconstruction of 3D Genome Architecture from Chromatin Conformation Capture Data
从染色质构象捕获数据重建 3D 基因组架构
- 批准号:
10000929 - 财政年份:2013
- 资助金额:
$ 31.7万 - 项目类别:
相似海外基金
AI-based prediction of the belepharoptosis etiologies by means of machine learning algorithmic analysis of length-tensile force chart of levator muscle
通过提上睑肌长度-拉力图的机器学习算法分析,基于人工智能的上睑下垂病因预测
- 批准号:
22K09863 - 财政年份:2022
- 资助金额:
$ 31.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2013
- 资助金额:
$ 31.7万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2012
- 资助金额:
$ 31.7万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2011
- 资助金额:
$ 31.7万 - 项目类别:
Discovery Grants Program - Individual
Unified Approach for Nanotechnology CAD/Computation by Algorithmic Analysis of Periodic Crystal Structures
通过周期性晶体结构的算法分析实现纳米技术 CAD/计算的统一方法
- 批准号:
22650002 - 财政年份:2010
- 资助金额:
$ 31.7万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2010
- 资助金额:
$ 31.7万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2009
- 资助金额:
$ 31.7万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2008
- 资助金额:
$ 31.7万 - 项目类别:
Discovery Grants Program - Individual
Mathematical & Algorithmic Analysis of Natural and Artificial DNA Sequences
数学
- 批准号:
0218568 - 财政年份:2002
- 资助金额:
$ 31.7万 - 项目类别:
Standard Grant
Algorithmic Analysis and Congestion Control of Connection-Oriented Services in Large Scale Communication Networks.
大规模通信网络中面向连接的服务的算法分析和拥塞控制。
- 批准号:
9404947 - 财政年份:1994
- 资助金额:
$ 31.7万 - 项目类别:
Standard Grant














{{item.name}}会员




