Bromodomain Inhibitors Correct Bioenergetic Deficiency Caused by Mitochondrial Disease Complex Mutations
布罗莫结构域抑制剂可纠正线粒体疾病复杂突变引起的生物能缺陷
基本信息
- 批准号:9258917
- 负责人:
- 金额:$ 5.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressApplications GrantsBindingBiochemicalBioenergeticsBiological AssayBromodomainCell DeathCell LineCell SurvivalCell modelCellsCessation of lifeChemicalsClinicalClustered Regularly Interspaced Short Palindromic RepeatsComplexCytochrome c ReductaseDNADataDefectDevelopmentFailureFamilyFibroblastsGalactoseGene ExpressionGene ProteinsGenesGeneticGoalsHistonesHumanHybridsInborn Genetic DiseasesIncidenceInheritedLactic AcidosisLeadMELAS SyndromeMapsMediatingMedicalMetabolicMitochondriaMitochondrial DiseasesMitochondrial EncephalomyopathiesMolecularMutateMutationMyoclonic EpilepsiesNADH dehydrogenase (ubiquinone)NuclearOutcome StudyOxidative PhosphorylationOxygen ConsumptionPatientsPharmaceutical PreparationsProteinsProteomicsRecruitment ActivityRed FiberReportingSeriesStrokeTestingTherapeuticTherapeutic Interventionchromatin immunoprecipitationeffective therapyexperimental studygain of functiongenome-widehuman diseaseimprovedinhibitor/antagonistinsightloss of functionmembernew technologynew therapeutic targetnovelnovel therapeuticsoptic nerve disorderoverexpressionpreventprogramspromoterprotein expressiontranscription factor
项目摘要
Project Abstract
Mitochondrial diseases comprise a heterogeneous group of genetically inherited disorders resulting
from mutations in mitochondrial or nuclear encoded genes that cause failures in mitochondrial energetic and
metabolic function which, in the most severe cases, will lead to death. Incidence rates of 1:5000 have been
reported placing mitochondrial disorders as one of the most commonly inherited human diseases. To date,
there are no effective treatments, and as such, represents an urgent medical need to develop new
technologies and platforms to uncover novel therapeutic opportunities. Identification of specific targets and
drugs that increase mitochondrial bioenergetics can be of therapeutic value to treat mitochondrial diseases.
To address this goal, we performed an unbiased high-throughput chemical and complementary genome-wide
CRISPR editing screen in trans-mitochondrial hybrid (cybrids) cells harboring a mutation in a mitochondrial
encoded complex I subunit. The IBET 525762A bromodomain and extraterminal domain (IBET) inhibitor
emerged as the most potent compound to enhance the oxidative phosphorylation (OXPHOS) capacity in these
cells. IBET 525762A functionally targets bromodomain-containing protein 4 (Brd4) and its inhibition enhances
oxidative phosphorylation genes, protein, and activity. Furthermore, Brd4 inhibition promotes human cybrid cell
survival under high energetic demands and protects against galactose-induced cell death (a standard clinical
assay to identify mitochondrial defects). To explore the mechanism detailing how Brd4 inhibition controls
mitochondrial bioenergetics, a series of comprehensive biochemical and metabolic analysis will be performed.
Two specific aims will be assessed. In the first aim, we would like to explore on a molecular and functional
level how Brd4 controls mitochondrial gene expression programs in cybrid cells. We will map the occupancy
and interacting partners of Brd4 to gain insights into this mechanism. Aim 2 will assess the cellular, metabolic,
and bioenergetic effects of Brd4 inhibition in other human cybrid and patient-derived fibroblasts cells with
diverse mitochondrial disorders. We will determine if IBET 525762A-mediated increases in the OXPHOS
program can persist to other cellular models of mitochondrial disease. The results from the proposed studies
will improve our understanding of how Brd4 inhibition restores mitochondrial energetic function in mitochondrial
disease cellular models. This will lead to the development of effective therapies for patients with mitochondrial
disorders.
项目摘要
线粒体疾病包括一组异质的遗传性遗传性疾病,
来自线粒体或核编码基因的突变,导致线粒体能量和能量的衰竭
代谢功能,在最严重的情况下,会导致死亡。发病率为1:5000,
报告将线粒体疾病列为最常见的人类遗传疾病之一。到目前为止,
没有有效的治疗方法,因此,代表了开发新的
技术和平台,以发现新的治疗机会。确定具体目标,
增加线粒体生物能量学的药物可以具有治疗线粒体疾病的治疗价值。
为了实现这一目标,我们进行了一个公正的高通量化学和互补的全基因组
CRISPR编辑筛选在线粒体中携带突变的跨线粒体杂交(胞质杂种)细胞
编码复合物I亚单位。IBET 525762A布罗莫结构域和末端外结构域(IBET)抑制剂
出现作为最有效的化合物,以提高氧化磷酸化(OXPHOS)的能力,在这些
细胞IBET 525762 A功能性靶向含溴结构域蛋白4(Brd4),其抑制增强了
氧化磷酸化基因、蛋白质和活性。此外,Brd4抑制促进人胞质杂交细胞
在高能量需求下存活,并保护免受半乳糖诱导的细胞死亡(标准临床试验)。
测定以鉴定线粒体缺陷)。为了探索详细描述Brd4抑制如何控制
在线粒体生物能量学的基础上,将进行一系列全面的生化和代谢分析。
将评估两个具体目标。在第一个目标中,我们想探索一种分子和功能上的
水平Brd4如何控制胞质杂交细胞中的线粒体基因表达程序。我们会绘制出
和Brd4的相互作用伙伴,以深入了解这一机制。目标2将评估细胞,代谢,
和Brd4抑制在其他人胞质杂种和患者来源的成纤维细胞中的生物能量效应,
多种线粒体疾病我们将确定IBET 525762A介导的OXPHOS增加是否
程序可以持续到线粒体疾病的其他细胞模型。拟议研究的结果
将提高我们对Brd4抑制如何恢复线粒体能量功能的理解,
疾病细胞模型。这将导致开发有效的治疗线粒体疾病的患者的方法。
紊乱
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joeva J. Barrow其他文献
Multi-platform omics analysis of Nipah virus infection reveals viral glycoprotein modulation of mitochondria
尼帕病毒感染的多平台组学分析揭示了线粒体的病毒糖蛋白调节
- DOI:
10.1016/j.celrep.2025.115411 - 发表时间:
2025-03-25 - 期刊:
- 影响因子:6.900
- 作者:
Gunner P. Johnston;Fikret Aydemir;Haewon Byun;Emmie de Wit;Kristie L. Oxford;Jennifer E. Kyle;Jason E. McDermott;Brooke L. Deatherage Kaiser;Cameron P. Casey;Karl K. Weitz;Heather M. Olson;Kelly G. Stratton;Natalie C. Heller;Viraj Upadhye;I. Abrrey Monreal;J. Lizbeth Reyes Zamora;Lei Wu;D.H. Goodall;David W. Buchholz;Joeva J. Barrow;Hector C. Aguilar - 通讯作者:
Hector C. Aguilar
Joeva J. Barrow的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joeva J. Barrow', 18)}}的其他基金
Novel Thermogenic Factors to Combat Obesity and Metabolic Disease
对抗肥胖和代谢疾病的新型生热因子
- 批准号:
9809570 - 财政年份:2019
- 资助金额:
$ 5.92万 - 项目类别:
Novel Thermogenic Factors to Combat Obesity and Metabolic Disease
对抗肥胖和代谢疾病的新型生热因子
- 批准号:
10190927 - 财政年份:2019
- 资助金额:
$ 5.92万 - 项目类别: