Neural Tissue Engineering Based on Combinatorial Effect of Multiple Guidance Cues
基于多种引导线索组合效应的神经组织工程
基本信息
- 批准号:9271054
- 负责人:
- 金额:$ 32.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-04-01 至 2019-03-31
- 项目状态:已结题
- 来源:
- 关键词:AxonBiochemicalCaliberChemicalsClinicalComplexCuesDevelopmentDiffuseElectrodesElectrophysiology (science)ElectroplatingElectrospinningEnvironmentEquilibriumGrowthGrowth ConesHandHealthHydrogelsIn VitroIndividualInjuryLamininLeftLengthMeasuresMicroelectrodesModelingMonitorMorphologyNanostructuresNanotubesNatural regenerationNerve Growth FactorsNerve RegenerationNervous system structureNeuronsPathway interactionsPeripheral Nervous SystemPolymersProteinsPublic HealthRattusRecovery of FunctionRegulationReproducibilityResearchShapesSideSiteSocietiesSpinal CordSpinal GangliaSpinal cord injurySurfaceTechniquesTestingTimeTissue EngineeringWorkaxon growthaxon guidanceaxon regenerationaxonal guidancebasebiomaterial compatibilitycombinatorialcontrolled releasecost effectivedensityelectric impedanceexperimental studyextracellularhigh throughput technologyimprovedin vitro testingin vivonanostructurednerve gapnerve injuryneurite growthneuronal growthnovelpolymerizationpublic health relevancerelating to nervous systemscaffoldstatistical centersuccessvoltage
项目摘要
DESCRIPTION: This application aims to provide a mechanistic understanding of the effect of gradients of physical and chemical guidance cues (GCs), individually and combinatory, on guidance and modulation of axonal growth. The proposed study will specifically answer to questions whether: (1) immediate turning of growth cone depends on the difference between the concentration gradients on the left- and right-hand sides of the growth cone; (2) immediate and biased turning and growth-rate modulation work together to guide axons towards their targets; (3) integration of gradients of multiple cues can provide a precise regulation mechanism for axonal guidance. Axons are guided along specific pathways by gradients of attractive and repulsive cues in their extracellular environment. To understand the effect of gradients of guidance cues individually or in combination on growth cone turning and growth rate modulation, the development of platforms that are capable of producing precisely controlled shape gradients of guidance cues is essential. I propose to develop an inexpensive and high- throughput technology that is capable of providing precise, reproducible, and arbitrarily shaped gradients of physical and biochemical cues to direct and modulate axonal growth. For these studies, we will first fabricate aligned nanotubes of conducting polymer loaded with nerve growth factor on micro-fabricated electrode arrays. To release the entrapped nerve growth factor, we will actuate these nanotubes by applying electrical voltages. By varying the actuating voltage across the electrode array, we will create precisely controlled gradients of released nerve growth factor on these microelectrodes. Next, we will generate gradients of substrate-bound molecules, in this case laminin, on conducting polymer nanotubes across the electrode array. Inclusion of laminin on the nanotubes will be achieved by using this protein as a dopant during electropolymerization of conducting polymer. We will employ different concentrations of laminin on individual electrode sites to achieve the desired gradient profile. To generate gradients of surface topography, we will create gradients in diameter and surface roughness of aligned conducting polymer nanotubes on the micro-fabricated electrode arrays. We will modulate (a) the diameter of conducting polymer nanotubes by varying the time of electrochemical polymerization of conducting polymer, and (b) the surface roughness of conducting polymer nanotubes by varying the current density applied during electrodeposition. Finally, we will develop a 3D conduit consisting of a PDMS guidance channel that contains nanostructured conducting polymers that provide (i) physical and biochemical growth cues, and (ii) low impedance electrodes to monitor axonal growth by electrophysiological recording along the regeneration pathway. This multifunctional conduit will be tested in vitro and vivo to determine the effect of gradient of multiple guidance cues on axonal growth direction and rate. The results of these studies may significantly impact society by paving the way for a solution to the major clinical problem of axon regeneration and guidance.
产品说明:本申请的目的是提供一个机制的理解梯度的物理和化学的指导线索(GC),单独和组合,指导和调制轴突生长。拟议的研究将具体回答以下问题:(1)生长锥的立即转向是否取决于生长锥左侧和右侧浓度梯度之间的差异;(2)立即和偏置转向以及生长率调节共同作用,引导轴突走向其目标;(3)多种线索梯度的整合可以为轴突导向提供精确的调节机制。轴突被细胞外环境中的吸引和排斥线索的梯度引导沿着特定的通路。为了了解引导线索的梯度单独或组合对生长锥转向和生长速率调节的影响,开发能够产生精确控制的引导线索形状梯度的平台至关重要。我建议开发一种廉价和高通量的技术,能够提供精确的,可重复的,和任意形状的梯度的物理和生物化学线索,以指导和调节轴突生长。在这些研究中,我们将首先在微加工电极阵列上制造载有神经生长因子的导电聚合物纳米管。为了释放截留的神经生长因子,我们将通过施加电压来驱动这些纳米管。通过改变电极阵列上的致动电压,我们将在这些微电极上产生精确控制的神经生长因子释放梯度。接下来,我们将在电极阵列上的导电聚合物纳米管上产生与基底结合的分子梯度,在这种情况下是层粘连蛋白。在导电聚合物的电聚合过程中,通过使用这种蛋白质作为掺杂剂,将层粘连蛋白包含在纳米管上。我们将在各个电极部位使用不同浓度的层粘连蛋白以获得所需的梯度分布。为了产生表面形貌的梯度,我们将在微加工电极阵列上对齐的导电聚合物纳米管的直径和表面粗糙度中产生梯度。我们将通过改变导电聚合物的电化学聚合时间来调节(a)导电聚合物纳米管的直径,以及通过改变电沉积期间施加的电流密度来调节(B)导电聚合物纳米管的表面粗糙度。最后,我们将开发一个3D导管组成的PDMS引导通道,包含纳米结构的导电聚合物,提供(i)物理和生化生长线索,和(ii)低阻抗电极监测轴突生长的电生理记录沿着再生途径。该多功能导管将在体外和体内进行测试,以确定多种引导线索的梯度对轴突生长方向和速率的影响。这些研究的结果可能会对社会产生重大影响,为解决轴突再生和指导的主要临床问题铺平道路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohammad Reza Abidian其他文献
Mohammad Reza Abidian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohammad Reza Abidian', 18)}}的其他基金
Neural Tissue Engineering Based on Combinatorial Effect of Multiple Guidance Cues
基于多种引导线索组合效应的神经组织工程
- 批准号:
8812022 - 财政年份:2014
- 资助金额:
$ 32.92万 - 项目类别:
Neural Tissue Engineering Based on Combinatorial Effect of Multiple Guidance Cues
基于多种引导线索组合效应的神经组织工程
- 批准号:
8674917 - 财政年份:2014
- 资助金额:
$ 32.92万 - 项目类别:
相似海外基金
CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
- 批准号:
2339759 - 财政年份:2024
- 资助金额:
$ 32.92万 - 项目类别:
Continuing Grant
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
- 批准号:
479334 - 财政年份:2023
- 资助金额:
$ 32.92万 - 项目类别:
Operating Grants
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
- 批准号:
23H02481 - 财政年份:2023
- 资助金额:
$ 32.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
- 批准号:
2320160 - 财政年份:2023
- 资助金额:
$ 32.92万 - 项目类别:
Standard Grant
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
- 批准号:
10637251 - 财政年份:2023
- 资助金额:
$ 32.92万 - 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
- 批准号:
10604822 - 财政年份:2023
- 资助金额:
$ 32.92万 - 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
- 批准号:
10716621 - 财政年份:2023
- 资助金额:
$ 32.92万 - 项目类别:
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
- 批准号:
10655891 - 财政年份:2023
- 资助金额:
$ 32.92万 - 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
- 批准号:
10621634 - 财政年份:2023
- 资助金额:
$ 32.92万 - 项目类别:
EAGER: Elastic Electronics for Sensing Gut Luminal and Serosal Biochemical Release
EAGER:用于感测肠腔和浆膜生化释放的弹性电子器件
- 批准号:
2334134 - 财政年份:2023
- 资助金额:
$ 32.92万 - 项目类别:
Standard Grant