Synthetic Genetic Controller Circuits to Reprogram Cell Fate

重新编程细胞命运的合成遗传控制器电路

基本信息

  • 批准号:
    9367460
  • 负责人:
  • 金额:
    $ 63.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

Synthetic genetic feedback controller circuits to reprogram cell fate PI: Domitilla Del Vecchio1;4 co-PIs: James J. Collins2;4;5;6, Thorsten Schlaeger7, and Ron Weiss2;3;4 1Department of Mechanical Engineering, MIT; 2Department of Biological Engineering, MIT 3Department of Electrical Engineering and Computer Science, MIT 4Synthetic Biology Center, MIT; 5Broad Institute of MIT & Harvard; 6The Wyss Institute 7 Stem Cell Transplantation Program, Boston Children's Hospital PROJECT SUMMARY The past decade has seen monumental discoveries in the stem cell field, with demonstrations that the fate of a terminally differentiated cell, contrary to what was traditionally believed, could be reverted back to pluripotency or directly converted to other differentiated cell types. All of a sudden, new approaches to regenerative medicine seem within reach: lost or damaged cells could be replaced by patient-specific reprogrammed cells, thus providing on- demand, compatible, high-quality cells of any required type. To meet this vision, the scientific community has made tremendous efforts toward establishing robust and efficient protocols for cell fate reprogramming. These protocols are largely based on a priori fixed (prefixed) ectopic overexpression of suitable transcription factors (TFs), with the rationale that this overexpression could trigger transitions among the states of the gene regulatory networks (GRNs) that take part in cell fate determination. Yet, despite a decade of remarkable progress, the efficiency of these protocols remains low, the quality of produced cells is often unsatisfactory, and many potentially useful direct cell fate conversions still seem impossible. These issues pose a formidable obstacle to the practical use of both human induced pluripotent stem cells (hiPSCs) and transdifferentiated cells in regenerative medicine. Arguably, our ability to accurately and precisely steer the concentrations of GRNs' TFs within desired ranges is critical to the success of cell fate reprogramming. Unfortunately, current protocols based on prefixed TFs' overexpression have not demonstrated this critical ability. To address this problem, we propose a completely new approach to cell fate reprogramming in this project: we replace prefixed overexpression with feedback overexpression of TFs, which we realize with an in vivo synthetic genetic feedback controller circuit. Within this circuit, the overexpression level is not a priori fixed and is adjusted based on the discrepancy between desired and actual TF's concentrations. It therefore can accurately and precisely control TFs' concentrations to desired values, independent of the endogenous GRN that also regulates these TFs. Our research plan focuses first on hiPSC reprogramming as a test-bed for evaluating the benefit of our approach and second on directed differentiation of hiPSCs into platelets as a directly clinically relevant application. Specifically, in AIM 1, we propose to systematically investigate the efficacy of prefixed overexpression of pluripotency TFs for hiPSC reprogramming. In AIM 2, we propose to construct and test the synthetic genetic feedback controller circuits that implement feedback overexpression of a number of TFs concurrently. In AIM 3, we will leverage the synthetic genetic feedback controller circuits for human hiPSC reprogramming and for directed differentiation of hiPSCs into platelets. This project will result in substantially higher reprogramming efficiencies, in cell products that more closely resemble the target cell type, and in the future, in cell conversions that today seem not possible. More broadly, our synthetic genetic feedback controllers will empower scientists and practitioners with a new tool to accurately control the TFs' concentrations of any endogenous GRNs and, in particular, of those GRNs involved in cell fate determination. 1
合成遗传反馈控制器电路重编程细胞命运

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JAMES J COLLINS其他文献

JAMES J COLLINS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JAMES J COLLINS', 18)}}的其他基金

Molecular Circuits in the Hematopoietic Stem Cell Niche
造血干细胞生态位中的分子回路
  • 批准号:
    10410454
  • 财政年份:
    2020
  • 资助金额:
    $ 63.2万
  • 项目类别:
Molecular Circuits in the Hematopoietic Stem Cell Niche
造血干细胞生态位中的分子回路
  • 批准号:
    10656224
  • 财政年份:
    2020
  • 资助金额:
    $ 63.2万
  • 项目类别:
Molecular Circuits in the Hematopoietic Stem Cell Niche
造血干细胞生态位中的分子回路
  • 批准号:
    10231033
  • 财政年份:
    2020
  • 资助金额:
    $ 63.2万
  • 项目类别:
Customized stem cells for clinical application in blood disorders
定制干细胞用于血液疾病的临床应用
  • 批准号:
    8184350
  • 财政年份:
    2011
  • 资助金额:
    $ 63.2万
  • 项目类别:
Customized stem cells for clinical application in blood disorders
定制干细胞用于血液疾病的临床应用
  • 批准号:
    8520297
  • 财政年份:
    2011
  • 资助金额:
    $ 63.2万
  • 项目类别:
Customized stem cells for clinical application in blood disorders
定制干细胞用于血液疾病的临床应用
  • 批准号:
    8335194
  • 财政年份:
    2011
  • 资助金额:
    $ 63.2万
  • 项目类别:
Customized stem cells for clinical application in blood disorders
定制干细胞用于血液疾病的临床应用
  • 批准号:
    8541537
  • 财政年份:
    2011
  • 资助金额:
    $ 63.2万
  • 项目类别:
Customized stem cells for clinical application in blood disorders
定制干细胞用于血液疾病的临床应用
  • 批准号:
    8771044
  • 财政年份:
    2011
  • 资助金额:
    $ 63.2万
  • 项目类别:
BU--COLLINS
布-柯林斯
  • 批准号:
    7422169
  • 财政年份:
    2008
  • 资助金额:
    $ 63.2万
  • 项目类别:
A Network Biology Approach to Antibiotic Action and Bacterial Defense Mechanisms
抗生素作用和细菌防御机制的网络生物学方法
  • 批准号:
    8128715
  • 财政年份:
    2007
  • 资助金额:
    $ 63.2万
  • 项目类别:

相似海外基金

University of Aberdeen and Vertebrate Antibodies Limited KTP 23_24 R1
阿伯丁大学和脊椎动物抗体有限公司 KTP 23_24 R1
  • 批准号:
    10073243
  • 财政年份:
    2024
  • 资助金额:
    $ 63.2万
  • 项目类别:
    Knowledge Transfer Partnership
Role of Natural Antibodies and B1 cells in Fibroproliferative Lung Disease
天然抗体和 B1 细胞在纤维增生性肺病中的作用
  • 批准号:
    10752129
  • 财政年份:
    2024
  • 资助金额:
    $ 63.2万
  • 项目类别:
CAREER: Next-generation protease inhibitor discovery with chemically diversified antibodies
职业:利用化学多样化的抗体发现下一代蛋白酶抑制剂
  • 批准号:
    2339201
  • 财政年份:
    2024
  • 资助金额:
    $ 63.2万
  • 项目类别:
    Continuing Grant
Isolation and characterisation of monoclonal antibodies for the treatment or prevention of antibiotic resistant Acinetobacter baumannii infections
用于治疗或预防抗生素耐药鲍曼不动杆菌感染的单克隆抗体的分离和表征
  • 批准号:
    MR/Y008693/1
  • 财政年份:
    2024
  • 资助金额:
    $ 63.2万
  • 项目类别:
    Research Grant
Developing first-in-class aggregation-specific antibodies for a severe genetic neurological disease
开发针对严重遗传神经系统疾病的一流聚集特异性抗体
  • 批准号:
    10076445
  • 财政年份:
    2023
  • 资助金额:
    $ 63.2万
  • 项目类别:
    Grant for R&D
Discovery of novel nodal antibodies in the central nervous system demyelinating diseases and elucidation of the mechanisms through an optic nerve demyelination model
发现中枢神经系统脱髓鞘疾病中的新型节点抗体并通过视神经脱髓鞘模型阐明其机制
  • 批准号:
    23K14783
  • 财政年份:
    2023
  • 资助金额:
    $ 63.2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidation of the mechanisms controlling the physicochemical properties and functions of supercharged antibodies and development of their applications
阐明控制超电荷抗体的理化性质和功能的机制及其应用开发
  • 批准号:
    23KJ0394
  • 财政年份:
    2023
  • 资助金额:
    $ 63.2万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Role of antibodies in hepatitis E virus infection
抗体在戊型肝炎病毒感染中的作用
  • 批准号:
    10639161
  • 财政年份:
    2023
  • 资助金额:
    $ 63.2万
  • 项目类别:
Defining the protective or pathologic role of antibodies in Post-Ebola Syndrome
定义抗体在埃博拉后综合症中的保护或病理作用
  • 批准号:
    10752441
  • 财政年份:
    2023
  • 资助金额:
    $ 63.2万
  • 项目类别:
Human CMV monoclonal antibodies as therapeutics to inhibit virus infection and dissemination
人 CMV 单克隆抗体作为抑制病毒感染和传播的治疗药物
  • 批准号:
    10867639
  • 财政年份:
    2023
  • 资助金额:
    $ 63.2万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了